summaryrefslogtreecommitdiff
path: root/animism-align/cli/app/utils/draw_utils.py
blob: 8ae47fe722f8cbddaefcfab1046e6c84444dbba3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import sys
from math import sqrt
import logging

import numpy as np
import cv2 as cv

log = logging.getLogger('swimmer')


# ---------------------------------------------------------------------------
# 3D landmark drawing utilities
# ---------------------------------------------------------------------------

end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype=np.int32) - 1

def plot_keypoints(im, kpts):
  '''Draw 68 key points
  :param im: the input im
  :param kpts: (68, 3). flattened list
  '''
  im = im.copy()
  kpts = np.round(kpts).astype(np.int32)
  for i in range(kpts.shape[0]):
    st = kpts[i, :2]
    im = cv.circle(im, (st[0], st[1]), 1, (0, 0, 255), 2)
    if i in end_list:
      continue
    ed = kpts[i + 1, :2]
    im = cv.line(im, (st[0], st[1]), (ed[0], ed[1]), (255, 255, 255), 1)
  return im


def calc_hypotenuse(pts):
  bbox = [min(pts[0, :]), min(pts[1, :]), max(pts[0, :]), max(pts[1, :])]
  center = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2]
  radius = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2
  bbox = [center[0] - radius, center[1] - radius, center[0] + radius, center[1] + radius]
  llength = sqrt((bbox[2] - bbox[0]) ** 2 + (bbox[3] - bbox[1]) ** 2)
  return llength / 3

def build_camera_box(rear_size=90):
  point_3d = []
  rear_depth = 0
  point_3d.append((-rear_size, -rear_size, rear_depth))
  point_3d.append((-rear_size, rear_size, rear_depth))
  point_3d.append((rear_size, rear_size, rear_depth))
  point_3d.append((rear_size, -rear_size, rear_depth))
  point_3d.append((-rear_size, -rear_size, rear_depth))

  front_size = int(4 / 3 * rear_size)
  front_depth = int(4 / 3 * rear_size)
  point_3d.append((-front_size, -front_size, front_depth))
  point_3d.append((-front_size, front_size, front_depth))
  point_3d.append((front_size, front_size, front_depth))
  point_3d.append((front_size, -front_size, front_depth))
  point_3d.append((-front_size, -front_size, front_depth))
  point_3d = np.array(point_3d, dtype=np.float).reshape(-1, 3)

  return point_3d


def plot_pose_box(im, Ps, pts68s, color=(40, 255, 0), line_width=2):
  '''Draw a 3D box as annotation of pose. 
    ref: https://github.com/yinguobing/head-pose-estimation/blob/master/pose_estimator.py
  :param image: the input image
  :param P: (3, 4). Affine Camera Matrix.
  :param kpts: (2, 68) or (3, 68)
  '''
  im_draw = im.copy()
  if not isinstance(pts68s, list):
    pts68s = [pts68s]
  
  if not isinstance(Ps, list):
    Ps = [Ps]
  
  for i in range(len(pts68s)):
    pts68 = pts68s[i]
    llength = calc_hypotenuse(pts68)
    point_3d = build_camera_box(llength)
    P = Ps[i]

    # Map to 2d im points
    point_3d_homo = np.hstack((point_3d, np.ones([point_3d.shape[0], 1])))  # n x 4
    point_2d = point_3d_homo.dot(P.T)[:, :2]

    point_2d[:, 1] = - point_2d[:, 1]
    point_2d[:, :2] = point_2d[:, :2] - np.mean(point_2d[:4, :2], 0) + np.mean(pts68[:2, :27], 1)
    point_2d = np.int32(point_2d.reshape(-1, 2))

    # Draw all the lines
    cv.polylines(im_draw, [point_2d], True, color, line_width, cv.LINE_AA)
    cv.line(im_draw, tuple(point_2d[1]), tuple(point_2d[6]), color, line_width, cv.LINE_AA)
    cv.line(im_draw, tuple(point_2d[2]), tuple(point_2d[7]), color, line_width, cv.LINE_AA)
    cv.line(im_draw, tuple(point_2d[3]), tuple(point_2d[8]), color, line_width, cv.LINE_AA)

    return im_draw



# ---------------------------------------------------------------------------
#
# OpenCV drawing functions
#
# ---------------------------------------------------------------------------

pose_types = {'pitch': (0,0,255), 'roll': (255,0,0), 'yaw': (0,255,0)}

def draw_landmarks2D(im, points_norm, radius=3, color=(0,255,0)):
  '''Draws facial landmarks, either 5pt or 68pt
  '''
  im_dst = im.copy()
  dim = im.shape[:2][::-1]
  for x,y in points_norm:
    pt = (int(x*dim[0]), int(y*dim[1]))
    cv.circle(im_dst, pt, radius, color, -1, cv.LINE_AA)
  return im_dst

def draw_landmarks3D(im, points, radius=3, color=(0,255,0)):
  '''Draws 3D facial landmarks
  '''
  im_dst = im.copy()
  for x,y,z in points:
    cv.circle(im_dst, (x,y), radius, color, -1, cv.LINE_AA)
  return im_dst

def draw_bbox(im, bbox_norm, color=(0,255,0), stroke_weight=2):
  '''Draws BBox onto cv image
  '''
  im_dst = im.copy()
  bbox_dim = bbox_norm.to_bbox_dim(im.shape[:2][::-1])
  cv.rectangle(im_dst, bbox_dim.p1.xy, bbox_dim.p2.xy, color, stroke_weight, cv.LINE_AA)
  return im_dst

def draw_pose(im, pt_nose, image_pts):
  '''Draws 3-axis pose over image
  TODO: normalize point data
  '''
  im_dst = im.copy()
  log.debug(f'pt_nose: {pt_nose}')
  log.debug(f'image_pts pitch: {image_pts["pitch"]}')
  cv.line(im_dst, pt_nose, tuple(image_pts['pitch']), pose_types['pitch'], 3)
  cv.line(im_dst, pt_nose, tuple(image_pts['yaw']), pose_types['yaw'], 3)
  cv.line(im_dst, pt_nose, tuple(image_pts['roll']), pose_types['roll'], 3)
  return im_dst

def draw_text(im, pt_norm, text, size=1.0, color=(0,255,0)):
  '''Draws degrees as text over image
  '''
  im_dst = im.copy()
  dim = im.shape[:2][::-1]
  pt = tuple(map(int, (pt_norm[0]*dim[0], pt_norm[1]*dim[1])))
  cv.putText(im_dst, text, pt, cv.FONT_HERSHEY_SIMPLEX, size, color, thickness=1, lineType=cv.LINE_AA)
  return im_dst

def draw_degrees(im, pose_data, color=(0,255,0)):
  '''Draws degrees as text over image
  '''
  im_dst = im.copy()
  for i, pose_type in enumerate(pose_types.items()):
    k, clr = pose_type
    v = pose_data[k]
    t = '{}: {:.2f}'.format(k, v)
    origin = (10, 30 + (25 * i))
    cv.putText(im_dst, t, origin, cv.FONT_HERSHEY_SIMPLEX, 0.5, clr, thickness=2, lineType=2)
  return im_dst