1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
import tensorflow as tf
import numpy as np
from scipy.ndimage import imread
from glob import glob
import os
import constants as c
from tfutils import log10
##
# Data
##
def normalize_frames(frames):
"""
Convert frames from int8 [0, 255] to float32 [-1, 1].
@param frames: A numpy array. The frames to be converted.
@return: The normalized frames.
"""
new_frames = frames.astype(np.float32)
new_frames /= (255 / 2)
new_frames -= 1
return new_frames
def denormalize_frames(frames):
"""
Performs the inverse operation of normalize_frames.
@param frames: A numpy array. The frames to be converted.
@return: The denormalized frames.
"""
new_frames = frames + 1
new_frames *= (255 / 2)
# noinspection PyUnresolvedReferences
new_frames = new_frames.astype(np.uint8)
return new_frames
def clip_l2_diff(clip):
"""
@param clip: A numpy array of shape [c.TRAIN_HEIGHT, c.TRAIN_WIDTH, (3 * (c.HIST_LEN + 1))].
@return: The sum of l2 differences between the frame pixels of each sequential pair of frames.
"""
diff = 0
for i in xrange(c.HIST_LEN):
frame = clip[:, :, 3 * i:3 * (i + 1)]
next_frame = clip[:, :, 3 * (i + 1):3 * (i + 2)]
# noinspection PyTypeChecker
diff += np.sum(np.square(next_frame - frame))
return diff
def get_full_clips(data_dir, num_clips, num_rec_out=1):
"""
Loads a batch of random clips from the unprocessed train or test data.
@param data_dir: The directory of the data to read. Should be either c.TRAIN_DIR or c.TEST_DIR.
@param num_clips: The number of clips to read.
@param num_rec_out: The number of outputs to predict. Outputs > 1 are computed recursively,
using the previously-generated frames as input. Default = 1.
@return: An array of shape
[num_clips, c.TRAIN_HEIGHT, c.TRAIN_WIDTH, (3 * (c.HIST_LEN + num_rec_out))].
A batch of frame sequences with values normalized in range [-1, 1].
"""
clips = np.empty([num_clips,
c.FULL_HEIGHT,
c.FULL_WIDTH,
(3 * (c.HIST_LEN + num_rec_out))])
# get num_clips random episodes
ep_dirs = np.random.choice(glob(data_dir + '*'), num_clips)
# get a random clip of length HIST_LEN + num_rec_out from each episode
for clip_num, ep_dir in enumerate(ep_dirs):
ep_frame_paths = glob(os.path.join(ep_dir, '*'))
start_index = np.random.choice(len(ep_frame_paths) - (c.HIST_LEN + num_rec_out - 1))
clip_frame_paths = ep_frame_paths[start_index:start_index + (c.HIST_LEN + num_rec_out)]
# read in frames
for frame_num, frame_path in enumerate(clip_frame_paths):
frame = imread(frame_path, mode='RGB')
norm_frame = normalize_frames(frame)
clips[clip_num, :, :, frame_num * 3:(frame_num + 1) * 3] = norm_frame
return clips
def process_clip():
"""
Gets a clip from the train dataset, cropped randomly to c.TRAIN_HEIGHT x c.TRAIN_WIDTH.
@return: An array of shape [c.TRAIN_HEIGHT, c.TRAIN_WIDTH, (3 * (c.HIST_LEN + 1))].
A frame sequence with values normalized in range [-1, 1].
"""
clip = get_full_clips(c.TRAIN_DIR, 1)[0]
# Randomly crop the clip. With 0.05 probability, take the first crop offered, otherwise,
# repeat until we have a clip with movement in it.
take_first = np.random.choice(2, p=[0.95, 0.05])
cropped_clip = np.empty([c.TRAIN_HEIGHT, c.TRAIN_WIDTH, 3 * (c.HIST_LEN + 1)])
for i in xrange(100): # cap at 100 trials in case the clip has no movement anywhere
crop_x = np.random.choice(c.FULL_WIDTH - c.TRAIN_WIDTH + 1)
crop_y = np.random.choice(c.FULL_HEIGHT - c.TRAIN_HEIGHT + 1)
cropped_clip = clip[crop_y:crop_y + c.TRAIN_HEIGHT, crop_x:crop_x + c.TRAIN_WIDTH, :]
if take_first or clip_l2_diff(cropped_clip) > c.MOVEMENT_THRESHOLD:
break
return cropped_clip
def get_train_batch():
"""
Loads c.BATCH_SIZE clips from the database of preprocessed training clips.
@return: An array of shape
[c.BATCH_SIZE, c.TRAIN_HEIGHT, c.TRAIN_WIDTH, (3 * (c.HIST_LEN + 1))].
"""
clips = np.empty([c.BATCH_SIZE, c.TRAIN_HEIGHT, c.TRAIN_WIDTH, (3 * (c.HIST_LEN + 1))],
dtype=np.float32)
for i in xrange(c.BATCH_SIZE):
path = c.TRAIN_DIR_CLIPS + str(np.random.choice(c.NUM_CLIPS)) + '.npz'
clip = np.load(path)['arr_0']
clips[i] = clip
return clips
def get_test_batch(test_batch_size, num_rec_out=1):
"""
Gets a clip from the test dataset.
@param test_batch_size: The number of clips.
@param num_rec_out: The number of outputs to predict. Outputs > 1 are computed recursively,
using the previously-generated frames as input. Default = 1.
@return: An array of shape:
[test_batch_size, c.TEST_HEIGHT, c.TEST_WIDTH, (3 * (c.HIST_LEN + num_rec_out))].
A batch of frame sequences with values normalized in range [-1, 1].
"""
return get_full_clips(c.TEST_DIR, test_batch_size, num_rec_out=num_rec_out)
##
# Error calculation
##
# TODO: Add SSIM error http://www.cns.nyu.edu/pub/eero/wang03-reprint.pdf
# TODO: Unit test error functions.
def psnr_error(gen_frames, gt_frames):
"""
Computes the Peak Signal to Noise Ratio error between the generated images and the ground
truth images.
@param gen_frames: A tensor of shape [batch_size, height, width, 3]. The frames generated by the
generator model.
@param gt_frames: A tensor of shape [batch_size, height, width, 3]. The ground-truth frames for
each frame in gen_frames.
@return: A scalar tensor. The mean Peak Signal to Noise Ratio error over each frame in the
batch.
"""
shape = tf.shape(gen_frames)
num_pixels = tf.to_float(shape[1] * shape[2])
square_diff = tf.square(gt_frames - gen_frames)
batch_errors = 10 * log10(1 / ((1 / num_pixels) * tf.reduce_sum(square_diff, [1, 2, 3])))
return tf.reduce_mean(batch_errors)
def sharp_diff_error(gen_frames, gt_frames):
"""
Computes the Sharpness Difference error between the generated images and the ground truth
images.
@param gen_frames: A tensor of shape [batch_size, height, width, 3]. The frames generated by the
generator model.
@param gt_frames: A tensor of shape [batch_size, height, width, 3]. The ground-truth frames for
each frame in gen_frames.
@return: A scalar tensor. The Sharpness Difference error over each frame in the batch.
"""
shape = tf.shape(gen_frames)
num_pixels = tf.to_float(shape[1] * shape[2])
# gradient difference
# create filters [-1, 1] and [[1],[-1]] for diffing to the left and down respectively.
# TODO: Could this be simplified with one filter [[-1, 2], [0, -1]]?
pos = tf.constant(np.identity(3), dtype=tf.float32)
neg = -1 * pos
filter_x = tf.expand_dims(tf.pack([neg, pos]), 0) # [-1, 1]
filter_y = tf.pack([tf.expand_dims(pos, 0), tf.expand_dims(neg, 0)]) # [[1],[-1]]
strides = [1, 1, 1, 1] # stride of (1, 1)
padding = 'SAME'
gen_dx = tf.abs(tf.nn.conv2d(gen_frames, filter_x, strides, padding=padding))
gen_dy = tf.abs(tf.nn.conv2d(gen_frames, filter_y, strides, padding=padding))
gt_dx = tf.abs(tf.nn.conv2d(gt_frames, filter_x, strides, padding=padding))
gt_dy = tf.abs(tf.nn.conv2d(gt_frames, filter_y, strides, padding=padding))
gen_grad_sum = gen_dx + gen_dy
gt_grad_sum = gt_dx + gt_dy
grad_diff = tf.abs(gt_grad_sum - gen_grad_sum)
batch_errors = 10 * log10(1 / ((1 / num_pixels) * tf.reduce_sum(grad_diff, [1, 2, 3])))
return tf.reduce_mean(batch_errors)
|