summaryrefslogtreecommitdiff
path: root/Code/utils.py
diff options
context:
space:
mode:
Diffstat (limited to 'Code/utils.py')
-rw-r--r--Code/utils.py212
1 files changed, 212 insertions, 0 deletions
diff --git a/Code/utils.py b/Code/utils.py
new file mode 100644
index 0000000..2b97bdb
--- /dev/null
+++ b/Code/utils.py
@@ -0,0 +1,212 @@
+import tensorflow as tf
+import numpy as np
+from scipy.ndimage import imread
+from glob import glob
+
+import constants as c
+from tfutils import log10
+
+##
+# Data
+##
+
+def normalize_frames(frames):
+ """
+ Convert frames from int8 [0, 255] to float32 [-1, 1].
+
+ @param frames: A numpy array. The frames to be converted.
+
+ @return: The normalized frames.
+ """
+ new_frames = frames.astype(np.float32)
+ new_frames /= (255 / 2)
+ new_frames -= 1
+
+ return new_frames
+
+
+def denormalize_frames(frames):
+ """
+ Performs the inverse operation of normalize_frames.
+
+ @param frames: A numpy array. The frames to be converted.
+
+ @return: The denormalized frames.
+ """
+ new_frames = frames + 1
+ new_frames *= (255 / 2)
+ # noinspection PyUnresolvedReferences
+ new_frames = new_frames.astype(np.uint8)
+
+ return new_frames
+
+def clip_l2_diff(clip):
+ """
+ @param clip: A numpy array of shape [c.TRAIN_HEIGHT, c.TRAIN_WIDTH, (3 * (c.HIST_LEN + 1))].
+ @return: The sum of l2 differences between the frame pixels of each sequential pair of frames.
+ """
+ diff = 0
+ for i in xrange(c.HIST_LEN):
+ frame = clip[:, :, 3 * i:3 * (i + 1)]
+ next_frame = clip[:, :, 3 * (i + 1):3 * (i + 2)]
+ # noinspection PyTypeChecker
+ diff += np.sum(np.square(next_frame - frame))
+
+ return diff
+
+def get_full_clips(data_dir, num_clips, num_rec_out=1):
+ """
+ Loads a batch of random clips from the unprocessed train or test data.
+
+ @param data_dir: The directory of the data to read. Should be either c.TRAIN_DIR or c.TEST_DIR.
+ @param num_clips: The number of clips to read.
+ @param num_rec_out: The number of outputs to predict. Outputs > 1 are computed recursively,
+ using the previously-generated frames as input. Default = 1.
+
+ @return: An array of shape
+ [num_clips, c.TRAIN_HEIGHT, c.TRAIN_WIDTH, (3 * (c.HIST_LEN + num_rec_out))].
+ A batch of frame sequences with values normalized in range [-1, 1].
+ """
+ clips = np.empty([num_clips,
+ c.TEST_HEIGHT,
+ c.TEST_WIDTH,
+ (3 * (c.HIST_LEN + num_rec_out))])
+
+ # get num_clips random episodes
+ ep_dirs = np.random.choice(glob(data_dir + '*'), num_clips)
+
+ # get a random clip of length HIST_LEN + 1 from each episode
+ for clip_num, ep_dir in enumerate(ep_dirs):
+ ep_frame_paths = glob(ep_dir + '/*')
+ start_index = np.random.choice(len(ep_frame_paths) - (c.HIST_LEN + num_rec_out - 1))
+ clip_frame_paths = ep_frame_paths[start_index:start_index + (c.HIST_LEN + num_rec_out)]
+
+ # read in frames
+ for frame_num, frame_path in enumerate(clip_frame_paths):
+ frame = imread(frame_path, mode='RGB')
+ norm_frame = normalize_frames(frame)
+
+ clips[clip_num, :, :, frame_num * 3:(frame_num + 1) * 3] = norm_frame
+
+ return clips
+
+def process_clip():
+ """
+ Gets a clip from the train dataset, cropped randomly to c.TRAIN_HEIGHT x c.TRAIN_WIDTH.
+
+ @return: An array of shape [c.TRAIN_HEIGHT, c.TRAIN_WIDTH, (3 * (c.HIST_LEN + 1))].
+ A frame sequence with values normalized in range [-1, 1].
+ """
+ clip = get_full_clips(c.TRAIN_DIR, 1)[0]
+
+ # Randomly crop the clip. With 0.05 probability, take the first crop offered, otherwise,
+ # repeat until we have a clip with movement in it.
+ take_first = np.random.choice(2, p=[0.95, 0.05])
+ cropped_clip = np.empty([c.TRAIN_HEIGHT, c.TRAIN_WIDTH, 3 * (c.HIST_LEN + 1)])
+ for i in xrange(100): # cap at 100 trials in case the clip has no movement anywhere
+ crop_x = np.random.choice(c.TEST_WIDTH - c.TRAIN_WIDTH + 1)
+ crop_y = np.random.choice(c.TEST_HEIGHT - c.TRAIN_HEIGHT + 1)
+ cropped_clip = clip[crop_y:crop_y + c.TRAIN_HEIGHT, crop_x:crop_x + c.TRAIN_WIDTH, :]
+
+ if take_first or clip_l2_diff(cropped_clip) > c.MOVEMENT_THRESHOLD:
+ break
+
+ return cropped_clip
+
+def get_train_batch():
+ """
+ Loads c.BATCH_SIZE clips from the database of preprocessed training clips.
+
+ @return: An array of shape
+ [c.BATCH_SIZE, c.TRAIN_HEIGHT, c.TRAIN_WIDTH, (3 * (c.HIST_LEN + 1))].
+ """
+ clips = np.empty([c.BATCH_SIZE, c.TRAIN_HEIGHT, c.TRAIN_WIDTH, (3 * (c.HIST_LEN + 1))],
+ dtype=np.float32)
+ for i in xrange(c.BATCH_SIZE):
+ path = c.TRAIN_DIR_CLIPS + str(np.random.choice(c.NUM_CLIPS)) + '.npz'
+ clip = np.load(path)['arr_0']
+
+ clips[i] = clip
+
+ return clips
+
+
+def get_test_batch(test_batch_size, num_rec_out=1):
+ """
+ Gets a clip from the test dataset.
+
+ @param test_batch_size: The number of clips.
+ @param num_rec_out: The number of outputs to predict. Outputs > 1 are computed recursively,
+ using the previously-generated frames as input. Default = 1.
+
+ @return: An array of shape:
+ [test_batch_size, c.TEST_HEIGHT, c.TEST_WIDTH, (3 * (c.HIST_LEN + num_rec_out))].
+ A batch of frame sequences with values normalized in range [-1, 1].
+ """
+ return get_full_clips(c.TEST_DIR, test_batch_size, num_rec_out=num_rec_out)
+
+
+##
+# Error calculation
+##
+
+# TODO: Add SSIM error http://www.cns.nyu.edu/pub/eero/wang03-reprint.pdf
+# TODO: Unit test error functions.
+
+def psnr_error(gen_frames, gt_frames):
+ """
+ Computes the Peak Signal to Noise Ratio error between the generated images and the ground
+ truth images.
+
+ @param gen_frames: A tensor of shape [batch_size, height, width, 3]. The frames generated by the
+ generator model.
+ @param gt_frames: A tensor of shape [batch_size, height, width, 3]. The ground-truth frames for
+ each frame in gen_frames.
+
+ @return: A scalar tensor. The mean Peak Signal to Noise Ratio error over each frame in the
+ batch.
+ """
+ shape = tf.shape(gen_frames)
+ num_pixels = tf.to_float(shape[1] * shape[2])
+ square_diff = tf.square(gt_frames - gen_frames)
+
+ batch_errors = 10 * log10(1 / ((1 / num_pixels) * tf.reduce_sum(square_diff, [1, 2, 3])))
+ return tf.reduce_mean(batch_errors)
+
+def sharp_diff_error(gen_frames, gt_frames):
+ """
+ Computes the Sharpness Difference error between the generated images and the ground truth
+ images.
+
+ @param gen_frames: A tensor of shape [batch_size, height, width, 3]. The frames generated by the
+ generator model.
+ @param gt_frames: A tensor of shape [batch_size, height, width, 3]. The ground-truth frames for
+ each frame in gen_frames.
+
+ @return: A scalar tensor. The Sharpness Difference error over each frame in the batch.
+ """
+ shape = tf.shape(gen_frames)
+ num_pixels = tf.to_float(shape[1] * shape[2])
+
+ # gradient difference
+ # create filters [-1, 1] and [[1],[-1]] for diffing to the left and down respectively.
+ # TODO: Could this be simplified with one filter [[-1, 2], [0, -1]]?
+ pos = tf.constant(np.identity(3), dtype=tf.float32)
+ neg = -1 * pos
+ filter_x = tf.expand_dims(tf.pack([neg, pos]), 0) # [-1, 1]
+ filter_y = tf.pack([tf.expand_dims(pos, 0), tf.expand_dims(neg, 0)]) # [[1],[-1]]
+ strides = [1, 1, 1, 1] # stride of (1, 1)
+ padding = 'SAME'
+
+ gen_dx = tf.abs(tf.nn.conv2d(gen_frames, filter_x, strides, padding=padding))
+ gen_dy = tf.abs(tf.nn.conv2d(gen_frames, filter_y, strides, padding=padding))
+ gt_dx = tf.abs(tf.nn.conv2d(gt_frames, filter_x, strides, padding=padding))
+ gt_dy = tf.abs(tf.nn.conv2d(gt_frames, filter_y, strides, padding=padding))
+
+ gen_grad_sum = gen_dx + gen_dy
+ gt_grad_sum = gt_dx + gt_dy
+
+ grad_diff = tf.abs(gt_grad_sum - gen_grad_sum)
+
+ batch_errors = 10 * log10(1 / ((1 / num_pixels) * tf.reduce_sum(grad_diff, [1, 2, 3])))
+ return tf.reduce_mean(batch_errors)