summaryrefslogtreecommitdiff
path: root/Code/d_model.py
diff options
context:
space:
mode:
Diffstat (limited to 'Code/d_model.py')
-rw-r--r--Code/d_model.py13
1 files changed, 9 insertions, 4 deletions
diff --git a/Code/d_model.py b/Code/d_model.py
index 1345ceb..02b882d 100644
--- a/Code/d_model.py
+++ b/Code/d_model.py
@@ -89,8 +89,8 @@ class DiscriminatorModel:
name='train_op')
# add summaries to visualize in TensorBoard
- loss_summary = tf.scalar_summary('loss_D', self.global_loss)
- self.summaries = tf.merge_summary([loss_summary])
+ loss_summary = tf.summary.scalar('loss_D', self.global_loss)
+ self.summaries = tf.summary.merge([loss_summary])
def build_feed_dict(self, input_frames, gt_output_frames, generator):
"""
@@ -123,14 +123,19 @@ class DiscriminatorModel:
for scale_num in xrange(self.num_scale_nets):
scale_net = self.scale_nets[scale_num]
+ broken = 0
# resize gt_output_frames
scaled_gt_output_frames = np.empty([batch_size, scale_net.height, scale_net.width, 3])
for i, img in enumerate(gt_output_frames):
# for skimage.transform.resize, images need to be in range [0, 1], so normalize to
# [0, 1] before resize and back to [-1, 1] after
sknorm_img = (img / 2) + 0.5
- resized_frame = resize(sknorm_img, [scale_net.height, scale_net.width, 3])
- scaled_gt_output_frames[i] = (resized_frame - 0.5) * 2
+ try:
+ resized_frame = resize(sknorm_img, [scale_net.height, scale_net.width, 3])
+ scaled_gt_output_frames[i-broken] = (resized_frame - 0.5) * 2
+ except:
+ broken += 1
+ #print str(broken) + " " + "broken images"
# combine with resized gt_output_frames to get inputs for prediction
scaled_input_frames = np.concatenate([g_scale_preds[scale_num],