summaryrefslogtreecommitdiff
path: root/tf_upgrade.py
diff options
context:
space:
mode:
authorjules@lens <julescarbon@gmail.com>2018-04-24 20:19:24 +0200
committerjules@lens <julescarbon@gmail.com>2018-04-24 20:19:24 +0200
commit83e91e0a8effcd20466e56b6ecc3e349bbfa5e0e (patch)
tree377977c1068fa2411ac6b0e7c6da4aa97873ae8b /tf_upgrade.py
parent9b0d10f357871231bbec06c610363588812216e1 (diff)
updates to tensorflow code and processing additionsHEADmaster
Diffstat (limited to 'tf_upgrade.py')
-rw-r--r--tf_upgrade.py742
1 files changed, 742 insertions, 0 deletions
diff --git a/tf_upgrade.py b/tf_upgrade.py
new file mode 100644
index 0000000..1f88335
--- /dev/null
+++ b/tf_upgrade.py
@@ -0,0 +1,742 @@
+# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+"""Upgrader for Python scripts from pre-1.0 TensorFlow to 1.0 TensorFlow."""
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import argparse
+import ast
+import collections
+import os
+import shutil
+import sys
+import tempfile
+import traceback
+
+
+class APIChangeSpec(object):
+ """This class defines the transformations that need to happen.
+
+ This class must provide the following fields:
+
+ * `function_keyword_renames`: maps function names to a map of old -> new
+ argument names
+ * `function_renames`: maps function names to new function names
+ * `change_to_function`: a set of function names that have changed (for
+ notifications)
+ * `function_reorders`: maps functions whose argument order has changed to the
+ list of arguments in the new order
+ * `function_handle`: maps function names to custom handlers for the function
+
+ For an example, see `TFAPIChangeSpec`.
+ """
+
+
+class _FileEditTuple(
+ collections.namedtuple("_FileEditTuple",
+ ["comment", "line", "start", "old", "new"])):
+ """Each edit that is recorded by a _FileEditRecorder.
+
+ Fields:
+ comment: A description of the edit and why it was made.
+ line: The line number in the file where the edit occurs (1-indexed).
+ start: The line number in the file where the edit occurs (0-indexed).
+ old: text string to remove (this must match what was in file).
+ new: text string to add in place of `old`.
+ """
+
+ __slots__ = ()
+
+
+class _FileEditRecorder(object):
+ """Record changes that need to be done to the file."""
+
+ def __init__(self, filename):
+ # all edits are lists of chars
+ self._filename = filename
+
+ self._line_to_edit = collections.defaultdict(list)
+ self._errors = []
+
+ def process(self, text):
+ """Process a list of strings, each corresponding to the recorded changes.
+
+ Args:
+ text: A list of lines of text (assumed to contain newlines)
+ Returns:
+ A tuple of the modified text and a textual description of what is done.
+ Raises:
+ ValueError: if substitution source location does not have expected text.
+ """
+
+ change_report = ""
+
+ # Iterate of each line
+ for line, edits in self._line_to_edit.items():
+ offset = 0
+ # sort by column so that edits are processed in order in order to make
+ # indexing adjustments cumulative for changes that change the string
+ # length
+ edits.sort(key=lambda x: x.start)
+
+ # Extract each line to a list of characters, because mutable lists
+ # are editable, unlike immutable strings.
+ char_array = list(text[line - 1])
+
+ # Record a description of the change
+ change_report += "%r Line %d\n" % (self._filename, line)
+ change_report += "-" * 80 + "\n\n"
+ for e in edits:
+ change_report += "%s\n" % e.comment
+ change_report += "\n Old: %s" % (text[line - 1])
+
+ # Make underscore buffers for underlining where in the line the edit was
+ change_list = [" "] * len(text[line - 1])
+ change_list_new = [" "] * len(text[line - 1])
+
+ # Iterate for each edit
+ for e in edits:
+ # Create effective start, end by accounting for change in length due
+ # to previous edits
+ start_eff = e.start + offset
+ end_eff = start_eff + len(e.old)
+
+ # Make sure the edit is changing what it should be changing
+ old_actual = "".join(char_array[start_eff:end_eff])
+ if old_actual != e.old:
+ raise ValueError("Expected text %r but got %r" %
+ ("".join(e.old), "".join(old_actual)))
+ # Make the edit
+ char_array[start_eff:end_eff] = list(e.new)
+
+ # Create the underline highlighting of the before and after
+ change_list[e.start:e.start + len(e.old)] = "~" * len(e.old)
+ change_list_new[start_eff:end_eff] = "~" * len(e.new)
+
+ # Keep track of how to generate effective ranges
+ offset += len(e.new) - len(e.old)
+
+ # Finish the report comment
+ change_report += " %s\n" % "".join(change_list)
+ text[line - 1] = "".join(char_array)
+ change_report += " New: %s" % (text[line - 1])
+ change_report += " %s\n\n" % "".join(change_list_new)
+ return "".join(text), change_report, self._errors
+
+ def add(self, comment, line, start, old, new, error=None):
+ """Add a new change that is needed.
+
+ Args:
+ comment: A description of what was changed
+ line: Line number (1 indexed)
+ start: Column offset (0 indexed)
+ old: old text
+ new: new text
+ error: this "edit" is something that cannot be fixed automatically
+ Returns:
+ None
+ """
+
+ self._line_to_edit[line].append(
+ _FileEditTuple(comment, line, start, old, new))
+ if error:
+ self._errors.append("%s:%d: %s" % (self._filename, line, error))
+
+
+class _ASTCallVisitor(ast.NodeVisitor):
+ """AST Visitor that processes function calls.
+
+ Updates function calls from old API version to new API version using a given
+ change spec.
+ """
+
+ def __init__(self, filename, lines, api_change_spec):
+ self._filename = filename
+ self._file_edit = _FileEditRecorder(filename)
+ self._lines = lines
+ self._api_change_spec = api_change_spec
+
+ def process(self, lines):
+ return self._file_edit.process(lines)
+
+ def generic_visit(self, node):
+ ast.NodeVisitor.generic_visit(self, node)
+
+ def _rename_functions(self, node, full_name):
+ function_renames = self._api_change_spec.function_renames
+ try:
+ new_name = function_renames[full_name]
+ self._file_edit.add("Renamed function %r to %r" % (full_name, new_name),
+ node.lineno, node.col_offset, full_name, new_name)
+ except KeyError:
+ pass
+
+ def _get_attribute_full_path(self, node):
+ """Traverse an attribute to generate a full name e.g. tf.foo.bar.
+
+ Args:
+ node: A Node of type Attribute.
+
+ Returns:
+ a '.'-delimited full-name or None if the tree was not a simple form.
+ i.e. `foo()+b).bar` returns None, while `a.b.c` would return "a.b.c".
+ """
+ curr = node
+ items = []
+ while not isinstance(curr, ast.Name):
+ if not isinstance(curr, ast.Attribute):
+ return None
+ items.append(curr.attr)
+ curr = curr.value
+ items.append(curr.id)
+ return ".".join(reversed(items))
+
+ def _find_true_position(self, node):
+ """Return correct line number and column offset for a given node.
+
+ This is necessary mainly because ListComp's location reporting reports
+ the next token after the list comprehension list opening.
+
+ Args:
+ node: Node for which we wish to know the lineno and col_offset
+ """
+ import re
+ find_open = re.compile("^\s*(\\[).*$")
+ find_string_chars = re.compile("['\"]")
+
+ if isinstance(node, ast.ListComp):
+ # Strangely, ast.ListComp returns the col_offset of the first token
+ # after the '[' token which appears to be a bug. Workaround by
+ # explicitly finding the real start of the list comprehension.
+ line = node.lineno
+ col = node.col_offset
+ # loop over lines
+ while 1:
+ # Reverse the text to and regular expression search for whitespace
+ text = self._lines[line - 1]
+ reversed_preceding_text = text[:col][::-1]
+ # First find if a [ can be found with only whitespace between it and
+ # col.
+ m = find_open.match(reversed_preceding_text)
+ if m:
+ new_col_offset = col - m.start(1) - 1
+ return line, new_col_offset
+ else:
+ if (reversed_preceding_text == "" or
+ reversed_preceding_text.isspace()):
+ line = line - 1
+ prev_line = self._lines[line - 1]
+ # TODO(aselle):
+ # this is poor comment detection, but it is good enough for
+ # cases where the comment does not contain string literal starting/
+ # ending characters. If ast gave us start and end locations of the
+ # ast nodes rather than just start, we could use string literal
+ # node ranges to filter out spurious #'s that appear in string
+ # literals.
+ comment_start = prev_line.find("#")
+ if comment_start == -1:
+ col = len(prev_line) - 1
+ elif find_string_chars.search(prev_line[comment_start:]) is None:
+ col = comment_start
+ else:
+ return None, None
+ else:
+ return None, None
+ # Most other nodes return proper locations (with notably does not), but
+ # it is not possible to use that in an argument.
+ return node.lineno, node.col_offset
+
+ def visit_Call(self, node): # pylint: disable=invalid-name
+ """Handle visiting a call node in the AST.
+
+ Args:
+ node: Current Node
+ """
+
+ # Find a simple attribute name path e.g. "tf.foo.bar"
+ full_name = self._get_attribute_full_path(node.func)
+
+ # Make sure the func is marked as being part of a call
+ node.func.is_function_for_call = True
+
+ if full_name:
+ # Call special handlers
+ function_handles = self._api_change_spec.function_handle
+ if full_name in function_handles:
+ function_handles[full_name](self._file_edit, node)
+
+ # Examine any non-keyword argument and make it into a keyword argument
+ # if reordering required.
+ function_reorders = self._api_change_spec.function_reorders
+ function_keyword_renames = (
+ self._api_change_spec.function_keyword_renames)
+
+ if full_name in function_reorders:
+ reordered = function_reorders[full_name]
+ for idx, arg in enumerate(node.args):
+ lineno, col_offset = self._find_true_position(arg)
+ if lineno is None or col_offset is None:
+ self._file_edit.add(
+ "Failed to add keyword %r to reordered function %r" %
+ (reordered[idx], full_name),
+ arg.lineno,
+ arg.col_offset,
+ "",
+ "",
+ error="A necessary keyword argument failed to be inserted.")
+ else:
+ keyword_arg = reordered[idx]
+ if (full_name in function_keyword_renames and
+ keyword_arg in function_keyword_renames[full_name]):
+ keyword_arg = function_keyword_renames[full_name][keyword_arg]
+ self._file_edit.add("Added keyword %r to reordered function %r" %
+ (reordered[idx], full_name), lineno, col_offset,
+ "", keyword_arg + "=")
+
+ # Examine each keyword argument and convert it to the final renamed form
+ renamed_keywords = ({} if full_name not in function_keyword_renames else
+ function_keyword_renames[full_name])
+ for keyword in node.keywords:
+ argkey = keyword.arg
+ argval = keyword.value
+
+ if argkey in renamed_keywords:
+ argval_lineno, argval_col_offset = self._find_true_position(argval)
+ if argval_lineno is not None and argval_col_offset is not None:
+ # TODO(aselle): We should scan backward to find the start of the
+ # keyword key. Unfortunately ast does not give you the location of
+ # keyword keys, so we are forced to infer it from the keyword arg
+ # value.
+ key_start = argval_col_offset - len(argkey) - 1
+ key_end = key_start + len(argkey) + 1
+ if (self._lines[argval_lineno - 1][key_start:key_end] == argkey +
+ "="):
+ self._file_edit.add("Renamed keyword argument from %r to %r" %
+ (argkey,
+ renamed_keywords[argkey]), argval_lineno,
+ argval_col_offset - len(argkey) - 1,
+ argkey + "=", renamed_keywords[argkey] + "=")
+ continue
+ self._file_edit.add(
+ "Failed to rename keyword argument from %r to %r" %
+ (argkey, renamed_keywords[argkey]),
+ argval.lineno,
+ argval.col_offset - len(argkey) - 1,
+ "",
+ "",
+ error="Failed to find keyword lexographically. Fix manually.")
+
+ ast.NodeVisitor.generic_visit(self, node)
+
+ def visit_Attribute(self, node): # pylint: disable=invalid-name
+ """Handle bare Attributes i.e. [tf.foo, tf.bar].
+
+ Args:
+ node: Node that is of type ast.Attribute
+ """
+ full_name = self._get_attribute_full_path(node)
+ if full_name:
+ self._rename_functions(node, full_name)
+ if full_name in self._api_change_spec.change_to_function:
+ if not hasattr(node, "is_function_for_call"):
+ new_text = full_name + "()"
+ self._file_edit.add("Changed %r to %r" % (full_name, new_text),
+ node.lineno, node.col_offset, full_name, new_text)
+
+ ast.NodeVisitor.generic_visit(self, node)
+
+
+class ASTCodeUpgrader(object):
+ """Handles upgrading a set of Python files using a given API change spec."""
+
+ def __init__(self, api_change_spec):
+ if not isinstance(api_change_spec, APIChangeSpec):
+ raise TypeError("Must pass APIChangeSpec to ASTCodeUpgrader, got %s" %
+ type(api_change_spec))
+ self._api_change_spec = api_change_spec
+
+ def process_file(self, in_filename, out_filename):
+ """Process the given python file for incompatible changes.
+
+ Args:
+ in_filename: filename to parse
+ out_filename: output file to write to
+ Returns:
+ A tuple representing number of files processed, log of actions, errors
+ """
+
+ # Write to a temporary file, just in case we are doing an implace modify.
+ with open(in_filename, "r") as in_file, \
+ tempfile.NamedTemporaryFile("w", delete=False) as temp_file:
+ ret = self.process_opened_file(in_filename, in_file, out_filename,
+ temp_file)
+
+ shutil.move(temp_file.name, out_filename)
+ return ret
+
+ # Broad exceptions are required here because ast throws whatever it wants.
+ # pylint: disable=broad-except
+ def process_opened_file(self, in_filename, in_file, out_filename, out_file):
+ """Process the given python file for incompatible changes.
+
+ This function is split out to facilitate StringIO testing from
+ tf_upgrade_test.py.
+
+ Args:
+ in_filename: filename to parse
+ in_file: opened file (or StringIO)
+ out_filename: output file to write to
+ out_file: opened file (or StringIO)
+ Returns:
+ A tuple representing number of files processed, log of actions, errors
+ """
+ process_errors = []
+ text = "-" * 80 + "\n"
+ text += "Processing file %r\n outputting to %r\n" % (in_filename,
+ out_filename)
+ text += "-" * 80 + "\n\n"
+
+ parsed_ast = None
+ lines = in_file.readlines()
+ try:
+ parsed_ast = ast.parse("".join(lines))
+ except Exception:
+ text += "Failed to parse %r\n\n" % in_filename
+ text += traceback.format_exc()
+ if parsed_ast:
+ visitor = _ASTCallVisitor(in_filename, lines, self._api_change_spec)
+ visitor.visit(parsed_ast)
+ out_text, new_text, process_errors = visitor.process(lines)
+ text += new_text
+ if out_file:
+ out_file.write(out_text)
+ text += "\n"
+ return 1, text, process_errors
+
+ # pylint: enable=broad-except
+
+ def process_tree(self, root_directory, output_root_directory,
+ copy_other_files):
+ """Processes upgrades on an entire tree of python files in place.
+
+ Note that only Python files. If you have custom code in other languages,
+ you will need to manually upgrade those.
+
+ Args:
+ root_directory: Directory to walk and process.
+ output_root_directory: Directory to use as base.
+ copy_other_files: Copy files that are not touched by this converter.
+
+ Returns:
+ A tuple of files processed, the report string ofr all files, and errors
+ """
+
+ # make sure output directory doesn't exist
+ if output_root_directory and os.path.exists(output_root_directory):
+ print("Output directory %r must not already exist." %
+ (output_root_directory))
+ sys.exit(1)
+
+ # make sure output directory does not overlap with root_directory
+ norm_root = os.path.split(os.path.normpath(root_directory))
+ norm_output = os.path.split(os.path.normpath(output_root_directory))
+ if norm_root == norm_output:
+ print("Output directory %r same as input directory %r" %
+ (root_directory, output_root_directory))
+ sys.exit(1)
+
+ # Collect list of files to process (we do this to correctly handle if the
+ # user puts the output directory in some sub directory of the input dir)
+ files_to_process = []
+ files_to_copy = []
+ for dir_name, _, file_list in os.walk(root_directory):
+ py_files = [f for f in file_list if f.endswith(".py")]
+ copy_files = [f for f in file_list if not f.endswith(".py")]
+ for filename in py_files:
+ fullpath = os.path.join(dir_name, filename)
+ fullpath_output = os.path.join(output_root_directory,
+ os.path.relpath(fullpath,
+ root_directory))
+ files_to_process.append((fullpath, fullpath_output))
+ if copy_other_files:
+ for filename in copy_files:
+ fullpath = os.path.join(dir_name, filename)
+ fullpath_output = os.path.join(output_root_directory,
+ os.path.relpath(
+ fullpath, root_directory))
+ files_to_copy.append((fullpath, fullpath_output))
+
+ file_count = 0
+ tree_errors = []
+ report = ""
+ report += ("=" * 80) + "\n"
+ report += "Input tree: %r\n" % root_directory
+ report += ("=" * 80) + "\n"
+
+ for input_path, output_path in files_to_process:
+ output_directory = os.path.dirname(output_path)
+ if not os.path.isdir(output_directory):
+ os.makedirs(output_directory)
+ file_count += 1
+ _, l_report, l_errors = self.process_file(input_path, output_path)
+ tree_errors += l_errors
+ report += l_report
+ for input_path, output_path in files_to_copy:
+ output_directory = os.path.dirname(output_path)
+ if not os.path.isdir(output_directory):
+ os.makedirs(output_directory)
+ shutil.copy(input_path, output_path)
+ return file_count, report, tree_errors
+
+
+class TFAPIChangeSpec(APIChangeSpec):
+ """List of maps that describe what changed in the API."""
+
+ def __init__(self):
+ # Maps from a function name to a dictionary that describes how to
+ # map from an old argument keyword to the new argument keyword.
+ self.function_keyword_renames = {
+ "tf.batch_matmul": {
+ "adj_x": "adjoint_a",
+ "adj_y": "adjoint_b",
+ },
+ "tf.count_nonzero": {
+ "reduction_indices": "axis"
+ },
+ "tf.reduce_all": {
+ "reduction_indices": "axis"
+ },
+ "tf.reduce_any": {
+ "reduction_indices": "axis"
+ },
+ "tf.reduce_max": {
+ "reduction_indices": "axis"
+ },
+ "tf.reduce_mean": {
+ "reduction_indices": "axis"
+ },
+ "tf.reduce_min": {
+ "reduction_indices": "axis"
+ },
+ "tf.reduce_prod": {
+ "reduction_indices": "axis"
+ },
+ "tf.reduce_sum": {
+ "reduction_indices": "axis"
+ },
+ "tf.reduce_logsumexp": {
+ "reduction_indices": "axis"
+ },
+ "tf.expand_dims": {
+ "dim": "axis"
+ },
+ "tf.argmax": {
+ "dimension": "axis"
+ },
+ "tf.argmin": {
+ "dimension": "axis"
+ },
+ "tf.reduce_join": {
+ "reduction_indices": "axis"
+ },
+ "tf.sparse_concat": {
+ "concat_dim": "axis"
+ },
+ "tf.sparse_split": {
+ "split_dim": "axis"
+ },
+ "tf.sparse_reduce_sum": {
+ "reduction_axes": "axis"
+ },
+ "tf.reverse_sequence": {
+ "seq_dim": "seq_axis",
+ "batch_dim": "batch_axis"
+ },
+ "tf.sparse_reduce_sum_sparse": {
+ "reduction_axes": "axis"
+ },
+ "tf.squeeze": {
+ "squeeze_dims": "axis"
+ },
+ "tf.split": {
+ "split_dim": "axis",
+ "num_split": "num_or_size_splits"
+ },
+ "tf.concat": {
+ "concat_dim": "axis"
+ },
+ }
+
+ # Mapping from function to the new name of the function
+ self.function_renames = {
+ "tf.inv": "tf.reciprocal",
+ "tf.contrib.deprecated.scalar_summary": "tf.summary.scalar",
+ "tf.contrib.deprecated.histogram_summary": "tf.summary.histogram",
+ "tf.listdiff": "tf.setdiff1d",
+ "tf.list_diff": "tf.setdiff1d",
+ "tf.mul": "tf.multiply",
+ "tf.neg": "tf.negative",
+ "tf.sub": "tf.subtract",
+ "tf.train.SummaryWriter": "tf.summary.FileWriter",
+ "tf.scalar_summary": "tf.summary.scalar",
+ "tf.histogram_summary": "tf.summary.histogram",
+ "tf.audio_summary": "tf.summary.audio",
+ "tf.image_summary": "tf.summary.image",
+ "tf.merge_summary": "tf.summary.merge",
+ "tf.merge_all_summaries": "tf.summary.merge_all",
+ "tf.image.per_image_whitening": "tf.image.per_image_standardization",
+ "tf.all_variables": "tf.global_variables",
+ "tf.VARIABLES": "tf.GLOBAL_VARIABLES",
+ "tf.initialize_all_variables": "tf.global_variables_initializer",
+ "tf.initialize_variables": "tf.variables_initializer",
+ "tf.initialize_local_variables": "tf.local_variables_initializer",
+ "tf.batch_matrix_diag": "tf.matrix_diag",
+ "tf.batch_band_part": "tf.band_part",
+ "tf.batch_set_diag": "tf.set_diag",
+ "tf.batch_matrix_transpose": "tf.matrix_transpose",
+ "tf.batch_matrix_determinant": "tf.matrix_determinant",
+ "tf.batch_matrix_inverse": "tf.matrix_inverse",
+ "tf.batch_cholesky": "tf.cholesky",
+ "tf.batch_cholesky_solve": "tf.cholesky_solve",
+ "tf.batch_matrix_solve": "tf.matrix_solve",
+ "tf.batch_matrix_triangular_solve": "tf.matrix_triangular_solve",
+ "tf.batch_matrix_solve_ls": "tf.matrix_solve_ls",
+ "tf.batch_self_adjoint_eig": "tf.self_adjoint_eig",
+ "tf.batch_self_adjoint_eigvals": "tf.self_adjoint_eigvals",
+ "tf.batch_svd": "tf.svd",
+ "tf.batch_fft": "tf.fft",
+ "tf.batch_ifft": "tf.ifft",
+ "tf.batch_fft2d": "tf.fft2d",
+ "tf.batch_ifft2d": "tf.ifft2d",
+ "tf.batch_fft3d": "tf.fft3d",
+ "tf.batch_ifft3d": "tf.ifft3d",
+ "tf.select": "tf.where",
+ "tf.complex_abs": "tf.abs",
+ "tf.batch_matmul": "tf.matmul",
+ "tf.pack": "tf.stack",
+ "tf.unpack": "tf.unstack",
+ "tf.op_scope": "tf.name_scope",
+ }
+
+ self.change_to_function = {
+ "tf.ones_initializer",
+ "tf.zeros_initializer",
+ }
+
+ # Functions that were reordered should be changed to the new keyword args
+ # for safety, if positional arguments are used. If you have reversed the
+ # positional arguments yourself, this could do the wrong thing.
+ self.function_reorders = {
+ "tf.split": ["axis", "num_or_size_splits", "value", "name"],
+ "tf.sparse_split": ["axis", "num_or_size_splits", "value", "name"],
+ "tf.concat": ["concat_dim", "values", "name"],
+ "tf.svd": ["tensor", "compute_uv", "full_matrices", "name"],
+ "tf.nn.softmax_cross_entropy_with_logits": [
+ "logits", "labels", "dim", "name"
+ ],
+ "tf.nn.sparse_softmax_cross_entropy_with_logits": [
+ "logits", "labels", "name"
+ ],
+ "tf.nn.sigmoid_cross_entropy_with_logits": ["logits", "labels", "name"],
+ "tf.op_scope": ["values", "name", "default_name"],
+ }
+
+ # Specially handled functions.
+ self.function_handle = {"tf.reverse": self._reverse_handler}
+
+ @staticmethod
+ def _reverse_handler(file_edit_recorder, node):
+ # TODO(aselle): Could check for a literal list of bools and try to convert
+ # them to indices.
+ comment = ("ERROR: tf.reverse has had its argument semantics changed "
+ "significantly the converter cannot detect this reliably, so "
+ "you need to inspect this usage manually.\n")
+ file_edit_recorder.add(
+ comment,
+ node.lineno,
+ node.col_offset,
+ "tf.reverse",
+ "tf.reverse",
+ error="tf.reverse requires manual check.")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser(
+ formatter_class=argparse.RawDescriptionHelpFormatter,
+ description="""Convert a TensorFlow Python file to 1.0
+
+Simple usage:
+ tf_convert.py --infile foo.py --outfile bar.py
+ tf_convert.py --intree ~/code/old --outtree ~/code/new
+""")
+ parser.add_argument(
+ "--infile",
+ dest="input_file",
+ help="If converting a single file, the name of the file "
+ "to convert")
+ parser.add_argument(
+ "--outfile",
+ dest="output_file",
+ help="If converting a single file, the output filename.")
+ parser.add_argument(
+ "--intree",
+ dest="input_tree",
+ help="If converting a whole tree of files, the directory "
+ "to read from (relative or absolute).")
+ parser.add_argument(
+ "--outtree",
+ dest="output_tree",
+ help="If converting a whole tree of files, the output "
+ "directory (relative or absolute).")
+ parser.add_argument(
+ "--copyotherfiles",
+ dest="copy_other_files",
+ help=("If converting a whole tree of files, whether to "
+ "copy the other files."),
+ type=bool,
+ default=False)
+ parser.add_argument(
+ "--reportfile",
+ dest="report_filename",
+ help=("The name of the file where the report log is "
+ "stored."
+ "(default: %(default)s)"),
+ default="report.txt")
+ args = parser.parse_args()
+
+ upgrade = ASTCodeUpgrader(TFAPIChangeSpec())
+ report_text = None
+ report_filename = args.report_filename
+ files_processed = 0
+ if args.input_file:
+ files_processed, report_text, errors = upgrade.process_file(
+ args.input_file, args.output_file)
+ files_processed = 1
+ elif args.input_tree:
+ files_processed, report_text, errors = upgrade.process_tree(
+ args.input_tree, args.output_tree, args.copy_other_files)
+ else:
+ parser.print_help()
+ if report_text:
+ open(report_filename, "w").write(report_text)
+ print("TensorFlow 1.0 Upgrade Script")
+ print("-----------------------------")
+ print("Converted %d files\n" % files_processed)
+ print("Detected %d errors that require attention" % len(errors))
+ print("-" * 80)
+ print("\n".join(errors))
+ print("\nMake sure to read the detailed log %r\n" % report_filename)