diff options
| author | Matt Cooper <matthew_cooper@brown.edu> | 2016-08-21 16:27:59 -0400 |
|---|---|---|
| committer | Matt Cooper <matthew_cooper@brown.edu> | 2016-08-21 16:27:59 -0400 |
| commit | 765a1c4a4dae54d0a6b42760845349ad39fe11f9 (patch) | |
| tree | ad8296f2c155ff42dc849e99d8ceb2c3e906415e /Code/test.py | |
| parent | 95601010338a90537edb7d2ba2de25e3008ffee6 (diff) | |
removed test
Diffstat (limited to 'Code/test.py')
| -rw-r--r-- | Code/test.py | 70 |
1 files changed, 0 insertions, 70 deletions
diff --git a/Code/test.py b/Code/test.py deleted file mode 100644 index 9072c2b..0000000 --- a/Code/test.py +++ /dev/null @@ -1,70 +0,0 @@ -import numpy as np -import constants as c -from utils import normalize_frames, get_test_batch -from glob import glob -from scipy.ndimage import imread -from scipy.misc import imsave -import os - -def save_batch(batch, num_rec_out): - # TEST - for clip_num, clip in enumerate(batch): - for frame_num in xrange(c.HIST_LEN + num_rec_out): - imsave(c.get_dir('TEST/' + str(clip_num) + '/') + str(frame_num) + '.png', - clip[:, :, frame_num * 3:(frame_num + 1) * 3]) - -def get_full_clips(data_dir, num_clips, num_rec_out=1): - """ - Loads a batch of random clips from the unprocessed train or test data. - - @param data_dir: The directory of the data to read. Should be either c.TRAIN_DIR or c.TEST_DIR. - @param num_clips: The number of clips to read. - @param num_rec_out: The number of outputs to predict. Outputs > 1 are computed recursively, - using the previously-generated frames as input. Default = 1. - - @return: An array of shape - [num_clips, c.TRAIN_HEIGHT, c.TRAIN_WIDTH, (3 * (c.HIST_LEN + num_rec_out))]. - A batch of frame sequences with values normalized in range [-1, 1]. - """ - clips = np.empty([num_clips, - c.FULL_HEIGHT, - c.FULL_WIDTH, - (3 * (c.HIST_LEN + num_rec_out))]) - - # get num_clips random episodes - ep_dirs = np.random.choice(glob(data_dir + '*'), num_clips) - print ep_dirs - - # get a random clip of length HIST_LEN + num_rec_out from each episode - for clip_num, ep_dir in enumerate(ep_dirs): - ep_frame_paths = sorted(glob(os.path.join(ep_dir, '*'))) - start_index = np.random.choice(len(ep_frame_paths) - (c.HIST_LEN + num_rec_out - 1)) - clip_frame_paths = ep_frame_paths[start_index:start_index + (c.HIST_LEN + num_rec_out)] - print clip_num - print clip_frame_paths - - # read in frames - for frame_num, frame_path in enumerate(clip_frame_paths): - frame = imread(frame_path, mode='RGB') - norm_frame = normalize_frames(frame) - - clips[clip_num, :, :, frame_num * 3:(frame_num + 1) * 3] = norm_frame - - # TEST - save_batch(clips, num_rec_out) - - return clips - -get_full_clips('../Data/Ms_Pacman/Test/', 1, num_rec_out=1) - -# def test(): -# """ -# Runs one test step on the generator network. -# """ -# batch = get_test_batch(c.BATCH_SIZE, num_rec_out=2) -# save_batch(batch, 2) -# -# # self.g_model.test_batch( -# # batch, self.global_step, num_rec_out=2) -# -# test() |
