# Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation This is a tensorflow implementation of the paper. [PDF](http://yhjo09.github.io/files/VSR-DUF_CVPR18.pdf) ## directory `./inputs/G/` Ground-truth video frames `./inputs/L/` Low-resolution video frames `./results/L/G/` Outputs from given ground-truth video frames using depth network `./results/L/L/` Outputs from given low-resolution video frames using depth network ## test Put your video frames to the input directory and run `test.py` with arguments `` and ``. ``` python test.py ``` `` is the depth of network of 16, 28, 52. `` is the type of input frames, `G` denotes GT inputs and `L` denotes LR inputs. For example, `python test.py 16 G` super-resolve input frames in `./inputs/G/*` using `16` depth network. ## video [![supplementary video](./supple/title.png)](./supple/VSR_supple_crf28.mp4?raw=true) ## bibtex ``` @InProceedings{Jo_2018_CVPR, author = {Jo, Younghyun and Oh, Seoung Wug and Kang, Jaeyeon and Kim, Seon Joo}, title = {Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2018} } ```