summaryrefslogtreecommitdiff
path: root/test.py
diff options
context:
space:
mode:
Diffstat (limited to 'test.py')
-rw-r--r--test.py49
1 files changed, 24 insertions, 25 deletions
diff --git a/test.py b/test.py
index 3347063..d1b74d2 100644
--- a/test.py
+++ b/test.py
@@ -36,6 +36,30 @@ if not(args.T == 'L' or args.T =='G'):
print('Invalid input type: {} (Must be L(Low-resolution) or G(Ground-truth))'.format(args.T))
exit(1)
+def process_dir(v):
+ scene_name = v.split('/')[-1]
+ os.mkdir('./results/{}L/L/{}/'.format(args.L, scene_name))
+
+ dir_frames = glob.glob(v + '/*.png')
+ dir_frames.sort()
+
+ frames = []
+ for f in dir_frames:
+ frames.append(LoadImage(f))
+ frames = np.asarray(frames)
+ frames_padded = np.lib.pad(frames, pad_width=((T_in//2,T_in//2),(0,0),(0,0),(0,0)), mode='constant')
+
+ for i in range(frames.shape[0]):
+ print('Scene {}: Frame {}/{} processing'.format(scene_name, i+1, frames.shape[0]))
+ in_L = frames_padded[i:i+T_in] # select T_in frames
+ in_L = in_L[np.newaxis,:,:,:,:]
+
+ out_H = sess.run(GH, feed_dict={L: in_L, is_train: False})
+ out_H = np.clip(out_H, 0, 1)
+
+ Image.fromarray(np.around(out_H[0,0]*255).astype(np.uint8)).save('./results/{}L/L/{}/Frame{:03d}.png'.format(args.L, scene_name, i+1))
+
+
def G(x, is_train):
# shape of x: [B,T_in,H,W,C]
@@ -137,28 +161,3 @@ with tf.Session(config=config) as sess:
dir_inputs = glob.glob('./inputs/L/*')
for v in dir_inputs:
process_dir(v)
-
-def process_dir(v):
- scene_name = v.split('/')[-1]
- os.mkdir('./results/{}L/L/{}/'.format(args.L, scene_name))
-
- dir_frames = glob.glob(v + '/*.png')
- dir_frames.sort()
-
- frames = []
- for f in dir_frames:
- frames.append(LoadImage(f))
- frames = np.asarray(frames)
- frames_padded = np.lib.pad(frames, pad_width=((T_in//2,T_in//2),(0,0),(0,0),(0,0)), mode='constant')
-
- for i in range(frames.shape[0]):
- print('Scene {}: Frame {}/{} processing'.format(scene_name, i+1, frames.shape[0]))
- in_L = frames_padded[i:i+T_in] # select T_in frames
- in_L = in_L[np.newaxis,:,:,:,:]
-
- out_H = sess.run(GH, feed_dict={L: in_L, is_train: False})
- out_H = np.clip(out_H, 0, 1)
-
- Image.fromarray(np.around(out_H[0,0]*255).astype(np.uint8)).save('./results/{}L/L/{}/Frame{:03d}.png'.format(args.L, scene_name, i+1))
-
-