#include #include #define VEC_0(ARRAY) ((ARRAY).x) #define VEC_1(ARRAY) ((ARRAY).y) #define VEC_2(ARRAY) ((ARRAY).z) #define VEC_3(ARRAY) ((ARRAY).w) #define IDX_1(ARRAY, X) ((ARRAY)[((X) * (ARRAY##_stride.x))]) #define IDX_2(ARRAY, X, Y) ((ARRAY)[((X) * (ARRAY##_stride.x)) + ((Y) * (ARRAY##_stride.y))]) #define IDX_3(ARRAY, X, Y, Z) ((ARRAY)[((X) * (ARRAY##_stride.x)) + ((Y) * (ARRAY##_stride.y)) + ((Z) * (ARRAY##_stride.z))]) #define IDX_4(ARRAY, X, Y, Z, W) ((ARRAY)[((X) * (ARRAY##_stride.x)) + ((Y) * (ARRAY##_stride.y)) + ((Z) * (ARRAY##_stride.z)) + ((W) * (ARRAY##_stride.w))]) #ifdef __cplusplus extern "C" { #endif __global__ void kernel_SeparableConvolution_updateOutput( const int n, const float* input1, const long4 input1_size, const long4 input1_stride, const float* input2, const long4 input2_size, const long4 input2_stride, const float* input3, const long4 input3_size, const long4 input3_stride, float* output, const long4 output_size, const long4 output_stride ) { int intIndex = blockIdx.x * blockDim.x + threadIdx.x; if (intIndex >= n) { return; } float dblOutput = 0.0; int intBatch = ( intIndex / VEC_3(output_size) / VEC_2(output_size) / VEC_1(output_size) ) % VEC_0(output_size); int intDepth = ( intIndex / VEC_3(output_size) / VEC_2(output_size) ) % VEC_1(output_size); int intY = ( intIndex / VEC_3(output_size) ) % VEC_2(output_size); int intX = ( intIndex ) % VEC_3(output_size); for (int intFilterY = 0; intFilterY < 51; intFilterY += 1) { for (int intFilterX = 0; intFilterX < 51; intFilterX += 1) { dblOutput += IDX_4(input1, intBatch, intDepth, intY + intFilterY, intX + intFilterX) * IDX_4(input2, intBatch, intFilterY, intY, intX) * IDX_4(input3, intBatch, intFilterX, intY, intX); } } output[intIndex] = dblOutput; } void SeparableConvolution_kernel_forward( THCState* state, THCudaTensor* input1, THCudaTensor* input2, THCudaTensor* input3, THCudaTensor* output ) { int n = 0; n = THCudaTensor_nElement(state, output); kernel_SeparableConvolution_updateOutput<<< (n + 512 - 1) / 512, 512, 0, THCState_getCurrentStream(state) >>>( n, THCudaTensor_data(state, input1), make_long4(input1->size[0], input1->size[1], input1->size[2], input1->size[3]), make_long4(input1->stride[0], input1->stride[1], input1->stride[2], input1->stride[3]), THCudaTensor_data(state, input2), make_long4(input2->size[0], input2->size[1], input2->size[2], input2->size[3]), make_long4(input2->stride[0], input2->stride[1], input2->stride[2], input2->stride[3]), THCudaTensor_data(state, input3), make_long4(input3->size[0], input3->size[1], input3->size[2], input3->size[3]), make_long4(input3->stride[0], input3->stride[1], input3->stride[2], input3->stride[3]), THCudaTensor_data(state, output), make_long4(output->size[0], output->size[1], output->size[2], output->size[3]), make_long4(output->stride[0], output->stride[1], output->stride[2], output->stride[3]) ); THCudaCheck(cudaGetLastError()); } #ifdef __cplusplus } #endif