### Copyright (C) 2017 NVIDIA Corporation. All rights reserved. ### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). import os from collections import OrderedDict from options.test_options import TestOptions from data.data_loader import CreateDataLoader from models.models import create_model import util.util as util from util.visualizer import Visualizer from util import html import torch from run_engine import run_trt_engine, run_onnx opt = TestOptions().parse(save=False) opt.nThreads = 1 # test code only supports nThreads = 1 opt.batchSize = 1 # test code only supports batchSize = 1 opt.serial_batches = True # no shuffle opt.no_flip = True # no flip data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() visualizer = Visualizer(opt) # create website web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch)) webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch)) # test if not opt.engine and not opt.onnx: model = create_model(opt) if opt.data_type == 16: model.half() elif opt.data_type == 8: model.type(torch.uint8) if opt.verbose: print(model) for i, data in enumerate(dataset): if i >= opt.how_many: break if opt.data_type == 16: data['label'] = data['label'].half() data['inst'] = data['inst'].half() elif opt.data_type == 8: data['label'] = data['label'].uint8() data['inst'] = data['inst'].uint8() if opt.export_onnx: print ("Exporting to ONNX: ", opt.export_onnx) assert opt.export_onnx.endswith("onnx"), "Export model file should end with .onnx" torch.onnx.export(model, [data['label'], data['inst']], opt.export_onnx, verbose=True) exit(0) minibatch = 1 if opt.engine: generated = run_trt_engine(opt.engine, minibatch, [data['label'], data['inst']]) elif opt.onnx: generated = run_onnx(opt.onnx, opt.data_type, minibatch, [data['label'], data['inst']]) else: generated = model.inference(data['label'], data['inst']) visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)), ('synthesized_image', util.tensor2im(generated.data[0]))]) img_path = data['path'] print('process image... %s' % img_path) visualizer.save_images(webpage, visuals, img_path) webpage.save()