### Copyright (C) 2017 NVIDIA Corporation. All rights reserved. ### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). import os.path from data.base_dataset import BaseDataset, get_params, get_transform, normalize from data.image_folder import make_dataset from PIL import Image class SequenceDataset(BaseDataset): def initialize(self, opt): self.opt = opt self.root = opt.dataroot ### input A (label maps) self.dir_A = opt.dataroot self.A_paths = sorted(make_dataset(self.dir_A)) self.dataset_size = len(self.A_paths) def __getitem__(self, index): ### input A (label maps) A_path = self.A_paths[index] A = Image.open(A_path) params = get_params(self.opt, A.size) if self.opt.label_nc == 0: transform_A = get_transform(self.opt, params) A_tensor = transform_A(A.convert('RGB')) else: transform_A = get_transform(self.opt, params, method=Image.NEAREST, normalize=False) A_tensor = transform_A(A) * 255.0 B_tensor = inst_tensor = feat_tensor = 0 input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor, 'feat': feat_tensor, 'path': A_path} return input_dict def __len__(self): return len(self.A_paths) def name(self): return 'SequenceDataset'