import os import glob import argparse from shutil import rmtree from PIL import Image from multiprocessing import Pool, cpu_count from dotenv import load_dotenv, find_dotenv import subprocess load_dotenv(find_dotenv()) # This script generates crops with a specific aspect ratio from a 360 video. # It creates three sequences (identified by "--label") # The default is a 24 degree overlap (equivalent to 1/6 of the 3:1 output image) # Setting a higher overlap means you can have taller vertical FOV. parser = argparse.ArgumentParser() parser.add_argument('--folder', default="./results/wood/") parser.add_argument('--out_dir', default="./thirds/") parser.add_argument('--label', required=True) parser.add_argument('--vertical_offset', type=int, default=256) # parser.add_argument('--dst_width', type=int, default=1024) # parser.add_argument('--dst_height', type=int, default=512) parser.add_argument('--count', type=int, default=3) parser.add_argument('--aspect', type=float, default=3.0) # parser.add_argument('--folder_id', type=int, required=True) parser.add_argument('--overlap', type=float, default=0.5) parser.add_argument('--clobber', action='store_false') opt = parser.parse_args() src_width = 1024 src_height = 512 dst_width = int(src_width / opt.count) dst_height = int(dst_width / opt.aspect) dst_size = (dst_width, dst_height,) y0 = opt.vertical_offset - dst_height / 2 crops = [] paths = [] for i in range(opt.count): x = int(i / opt.count * dst_width) crops.append((x, y0, x + dst_width, y0 + dst_height,)) path = os.path.join(opt.out_dir, opt.label, chr(97 + i)) if opt.clobber: if os.path.exists(path): rmtree(path) os.makedirs(path) paths.append(path) dataset = [] for i, fn in enumerate(sorted(glob.glob(os.path.join(opt.folder, '*.png')))): out_fn = "frame_{:05d}.png".format(i + 1) if not opt.clobber and os.path.exists(os.path.join(paths[0], out_fn)): continue dataset.append((i, fn,)) def build_thumbnail(i, fn): out_fn = "frame_{:05d}.png".format(i + 1) if (i % 100) == 0: print("{}...".format(i)) canvas = Image.new('RGB', (int(src_width), src_height,)) image = Image.open(fn) for n, path in enumerate(paths): image.crop(crops[n]).save(os.path.join(path, out_fn)) chunksize = 3 with Pool(processes=cpu_count()) as pool: pool.starmap(build_thumbnail, dataset, chunksize) # if opt.folder_id > 0: # endpoint = os.getenv('API_REMOTE') + '/api/file/' # for label in labels: # subprocess.call([ # "curl", # "-X", "POST", # "-d", "folder_id={}".format(opt.folder_id), # "-d", "module=pix2pixhd", # "-d", "name={}.mov".format(label), # "-d", "url=https://s3.amazonaws.com/i.asdf.us/cortex/lens/data/{}/{}.mov".format(opt.folder_id, label), # "-d", "dataset={}".format(label), # "-d", "activity=splice", # "-d", "generated=0", # "-d", "processed=1", # "-d", "datatype=video", # endpoint # ])