# pix2pixHD
### [[Project]](https://tcwang0509.github.io/pix2pixHD/) [[Youtube]](https://youtu.be/3AIpPlzM_qs) [[Paper]](https://arxiv.org/pdf/1711.11585.pdf)
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translation. It can be used for turning semantic label maps into photo-realistic images or synthesizing portraits from face label maps.
[High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs](https://tcwang0509.github.io/pix2pixHD/)
[Ting-Chun Wang](https://tcwang0509.github.io/)1, [Ming-Yu Liu](http://mingyuliu.net/)1, [Jun-Yan Zhu](http://people.eecs.berkeley.edu/~junyanz/)2, Andrew Tao1, [Jan Kautz](http://jankautz.com/)1, [Bryan Catanzaro](http://catanzaro.name/)1
1NVIDIA Corporation, 2UC Berkeley
In arxiv, 2017.
## Image-to-image translation at 2k/1k resolution
- Our label-to-streetview results
- Interactive editing results
- Additional streetview results
- Label-to-face and interactive editing results
- Our editing interface
## Prerequisites
- Linux or macOS
- Python 2 or 3
- NVIDIA GPU (12G or 24G memory) + CUDA cuDNN
## Getting Started
### Installation
- Install PyTorch and dependencies from http://pytorch.org
- Install python libraries [dominate](https://github.com/Knio/dominate).
```bash
pip install dominate
```
- Clone this repo:
```bash
git clone https://github.com/NVIDIA/pix2pixHD
cd pix2pixHD
```
### Testing
- A few example Cityscapes test images are included in the `datasets` folder.
- Please download the pre-trained Cityscapes model from [here](https://drive.google.com/file/d/1h9SykUnuZul7J3Nbms2QGH1wa85nbN2-/view?usp=sharing) (google drive link), and put it under `./checkpoints/label2city_1024p/`
- Test the model (`bash ./scripts/test_1024p.sh`):
```bash
#!./scripts/test_1024p.sh
python test.py --name label2city_1024p --netG local --ngf 32 --resize_or_crop none
```
The test results will be saved to a html file here: `./results/label2city_1024p/test_latest/index.html`.
More example scripts can be found in the `scripts` directory.
### Dataset
- We use the Cityscapes dataset. To train a model on the full dataset, please download it from the [official website](https://www.cityscapes-dataset.com/) (registration required).
After downloading, please put it under the `datasets` folder in the same way the example images are provided.
### Training
- Train a model at 1024 x 512 resolution (`bash ./scripts/train_512p.sh`):
```bash
#!./scripts/train_512p.sh
python train.py --name label2city_512p
```
- To view training results, please checkout intermediate results in `./checkpoints/label2city_512p/web/index.html`.
If you have tensorflow installed, you can see tensorboard logs in `./checkpoints/label2city_512p/logs` by adding `--tf_log` to the training scripts.
### Multi-GPU training
- Train a model using multiple GPUs (`bash ./scripts/train_512p_multigpu.sh`):
```bash
#!./scripts/train_512p_multigpu.sh
python train.py --name label2city_512p --batchSize 8 --gpu_ids 0,1,2,3,4,5,6,7
```
Note: this is not tested and we trained our model using single GPU only. Please use at your own discretion.
### Training at full resolution
- To train the images at full resolution (2048 x 1024) requires a GPU with 24G memory (`bash ./scripts/train_1024p_24G.sh`).
If only GPUs with 12G memory are available, please use the 12G script (`bash ./scripts/train_1024p_12G.sh`), which will crop the images during training. Performance is not guaranteed using this script.
## More Training/test Details
- Flags: see `options/train_options.py` and `options/base_options.py` for all the training flags; see `options/test_options.py` and `options/base_options.py` for all the test flags.
- Instance map: we take in both label maps and instance maps as input. If you don't want to use instance maps, please specify the flag `--no_instance`.
## Citation
If you find this useful for your research, please use the following.
```
@article{wang2017highres,
title={High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs},
author={Ting-Chun Wang and Ming-Yu Liu and Jun-Yan Zhu and Andrew Tao and Jan Kautz and Bryan Catanzaro},
journal={arXiv preprint arXiv:1711.11585},
year={2017}
}
```
## Acknowledgments
This code borrows heavily from [pytorch-CycleGAN-and-pix2pix](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).