summaryrefslogtreecommitdiff
path: root/train.py
diff options
context:
space:
mode:
Diffstat (limited to 'train.py')
-rwxr-xr-xtrain.py15
1 files changed, 10 insertions, 5 deletions
diff --git a/train.py b/train.py
index 231662c..ae3095f 100755
--- a/train.py
+++ b/train.py
@@ -38,7 +38,12 @@ print('#training images = %d' % dataset_size)
model = create_model(opt)
visualizer = Visualizer(opt)
-total_steps = (start_epoch-1) * dataset_size + epoch_iter
+total_steps = (start_epoch-1) * dataset_size + epoch_iter
+
+display_delta = total_steps % opt.display_freq
+print_delta = total_steps % opt.print_freq
+save_delta = total_steps % opt.save_latest_freq
+
for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
if epoch != start_epoch:
@@ -49,7 +54,7 @@ for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_iter += opt.batchSize
# whether to collect output images
- save_fake = total_steps % opt.display_freq == 0
+ save_fake = total_steps % opt.display_freq == display_delta
############## Forward Pass ######################
losses, generated = model(Variable(data['label']), Variable(data['inst']),
@@ -61,7 +66,7 @@ for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
# calculate final loss scalar
loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5
- loss_G = loss_dict['G_GAN'] + loss_dict['G_GAN_Feat'] + loss_dict['G_VGG']
+ loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0)
############### Backward Pass ####################
# update generator weights
@@ -78,7 +83,7 @@ for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
############## Display results and errors ##########
### print out errors
- if total_steps % opt.print_freq == 0:
+ if total_steps % opt.print_freq == print_delta:
errors = {k: v.data[0] if not isinstance(v, int) else v for k, v in loss_dict.items()}
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
@@ -92,7 +97,7 @@ for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
visualizer.display_current_results(visuals, epoch, total_steps)
### save latest model
- if total_steps % opt.save_latest_freq == 0:
+ if total_steps % opt.save_latest_freq == save_delta:
print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps))
model.module.save('latest')
np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')