summaryrefslogtreecommitdiff
path: root/crop-equirectangular-2048.py
diff options
context:
space:
mode:
Diffstat (limited to 'crop-equirectangular-2048.py')
-rw-r--r--crop-equirectangular-2048.py80
1 files changed, 80 insertions, 0 deletions
diff --git a/crop-equirectangular-2048.py b/crop-equirectangular-2048.py
new file mode 100644
index 0000000..77e57e3
--- /dev/null
+++ b/crop-equirectangular-2048.py
@@ -0,0 +1,80 @@
+import os
+import glob
+import argparse
+from shutil import rmtree
+from PIL import Image
+from multiprocessing import Pool, cpu_count
+from dotenv import load_dotenv, find_dotenv
+import subprocess
+load_dotenv(find_dotenv())
+
+# This script generates frames from a 360 equirectangular video and crops out the bottom third.
+
+parser = argparse.ArgumentParser()
+parser.add_argument('--folder', default="./sequences/venice_360/equi_4096/")
+parser.add_argument('--label', default="venice_360")
+parser.add_argument('--folder_id', type=int, required=True)
+parser.add_argument('--overlap', type=float, default=0.5)
+parser.add_argument('--clobber', action='store_false')
+opt = parser.parse_args()
+
+src_width = 4096
+src_height = 2048
+
+crop_width = 4096
+crop_height = 1670
+
+crop_dim = (0, 0, crop_width, crop_height,)
+
+label_0 = opt.label + "_equi_2048"
+label_1 = opt.label + "_equi_1024"
+labels = [label_0, label_1]
+path_0 = os.path.join("sequences", label_0)
+path_1 = os.path.join("sequences", label_1)
+
+if opt.clobber:
+ if os.path.exists(path_0):
+ rmtree(path_0)
+ if os.path.exists(path_1):
+ rmtree(path_1)
+
+os.makedirs(path_0)
+os.makedirs(path_1)
+
+dataset = []
+for i, fn in enumerate(sorted(glob.glob(os.path.join(opt.folder, '*.png')))):
+ out_fn = "frame_{:05d}.png".format(i + 1)
+ if not opt.clobber and os.path.exists(os.path.join(path_1, out_fn)):
+ continue
+ dataset.append((i, fn,))
+
+def build_thumbnail(i, fn):
+ out_fn = "frame_{:05d}.png".format(i + 1)
+ if (i % 100) == 0:
+ print("{}...".format(i))
+
+ image = Image.open(fn).crop(crop_dim)
+ image.resize((2048, 1024,), Image.ANTIALIAS).save(os.path.join(path_0, out_fn))
+ image.resize((1024, 512,), Image.ANTIALIAS).save(os.path.join(path_1, out_fn))
+
+chunksize = 3
+with Pool(processes=cpu_count()) as pool:
+ pool.starmap(build_thumbnail, dataset, chunksize)
+
+if opt.folder_id > 0:
+ endpoint = os.getenv('API_REMOTE') + '/api/file/'
+ for label in labels:
+ subprocess.call([
+ "curl",
+ "-X", "POST",
+ "-d", "folder_id={}".format(opt.folder_id),
+ "-d", "module=pix2pixhd",
+ "-d", "name={}.mov".format(label),
+ "-d", "url=https://s3.amazonaws.com/i.asdf.us/cortex/lens/data/{}/{}.mov".format(opt.folder_id, label),
+ "-d", "dataset={}".format(label),
+ "-d", "activity=splice",
+ "-d", "generated=0",
+ "-d", "processed=1",
+ "-d", "datatype=video",
+ endpoint
+ ])