diff options
| -rwxr-xr-x | README.md | 2 | ||||
| -rwxr-xr-x | data/aligned_dataset.py | 54 | ||||
| -rwxr-xr-x | models/models.py | 8 | ||||
| -rwxr-xr-x | models/ui_model.py | 349 | ||||
| -rwxr-xr-x | options/base_options.py | 1 |
5 files changed, 385 insertions, 29 deletions
@@ -109,7 +109,7 @@ If only GPUs with 12G memory are available, please use the 12G script (`bash ./s ### Training with your own dataset
- If you want to train with your own dataset, please generate label maps which are one-channel whose pixel values correspond to the object labels (i.e. 0,1,...,N-1, where N is the number of labels). This is because we need to generate one-hot vectors from the label maps. Please also specity `--label_nc N` during both training and testing.
-- If your input is not a label map, please just specify `--label_nc 0` which will directly use the RGB colors as input.
+- If your input is not a label map, please just specify `--label_nc 0` which will directly use the RGB colors as input. The folders should then be named `train_A`, `train_B` instead of `train_label`, `train_img`, where the goal is to translate images from A to B.
- If you don't have instance maps or don't want to use them, please specify `--no_instance`.
- The default setting for preprocessing is `scale_width`, which will scale the width of all training images to `opt.loadSize` (1024) while keeping the aspect ratio. If you want a different setting, please change it by using the `--resize_or_crop` option. For example, `scale_width_and_crop` first resizes the image to have width `opt.loadSize` and then does random cropping of size `(opt.fineSize, opt.fineSize)`. `crop` skips the resizing step and only performs random cropping. If you don't want any preprocessing, please specify `none`, which will do nothing other than making sure the image is divisible by 32.
diff --git a/data/aligned_dataset.py b/data/aligned_dataset.py index a3cdc76..41468d2 100755 --- a/data/aligned_dataset.py +++ b/data/aligned_dataset.py @@ -10,14 +10,16 @@ class AlignedDataset(BaseDataset): self.opt = opt self.root = opt.dataroot - ### label maps - self.dir_label = os.path.join(opt.dataroot, opt.phase + '_label') - self.label_paths = sorted(make_dataset(self.dir_label)) + ### input A (label maps) + dir_A = '_A' if self.opt.label_nc == 0 else '_label' + self.dir_A = os.path.join(opt.dataroot, opt.phase + dir_A) + self.A_paths = sorted(make_dataset(self.dir_A)) - ### real images + ### input B (real images) if opt.isTrain: - self.dir_image = os.path.join(opt.dataroot, opt.phase + '_img') - self.image_paths = sorted(make_dataset(self.dir_image)) + dir_B = '_B' if self.opt.label_nc == 0 else '_img' + self.dir_B = os.path.join(opt.dataroot, opt.phase + dir_B) + self.B_paths = sorted(make_dataset(self.dir_B)) ### instance maps if not opt.no_instance: @@ -30,47 +32,47 @@ class AlignedDataset(BaseDataset): print('----------- loading features from %s ----------' % self.dir_feat) self.feat_paths = sorted(make_dataset(self.dir_feat)) - self.dataset_size = len(self.label_paths) + self.dataset_size = len(self.A_paths) def __getitem__(self, index): - ### label maps - label_path = self.label_paths[index] - label = Image.open(label_path) - params = get_params(self.opt, label.size) + ### input A (label maps) + A_path = self.A_paths[index] + A = Image.open(A_path) + params = get_params(self.opt, A.size) if self.opt.label_nc == 0: - transform_label = get_transform(self.opt, params) - label_tensor = transform_label(label.convert('RGB')) + transform_A = get_transform(self.opt, params) + A_tensor = transform_A(A.convert('RGB')) else: - transform_label = get_transform(self.opt, params, method=Image.NEAREST, normalize=False) - label_tensor = transform_label(label) * 255.0 + transform_A = get_transform(self.opt, params, method=Image.NEAREST, normalize=False) + A_tensor = transform_A(A) * 255.0 - image_tensor = inst_tensor = feat_tensor = 0 - ### real images + B_tensor = inst_tensor = feat_tensor = 0 + ### input B (real images) if self.opt.isTrain: - image_path = self.image_paths[index] - image = Image.open(image_path).convert('RGB') - transform_image = get_transform(self.opt, params) - image_tensor = transform_image(image) + B_path = self.B_paths[index] + B = Image.open(B_path).convert('RGB') + transform_B = get_transform(self.opt, params) + B_tensor = transform_B(B) ### if using instance maps if not self.opt.no_instance: inst_path = self.inst_paths[index] inst = Image.open(inst_path) - inst_tensor = transform_label(inst) + inst_tensor = transform_A(inst) if self.opt.load_features: feat_path = self.feat_paths[index] feat = Image.open(feat_path).convert('RGB') norm = normalize() - feat_tensor = norm(transform_label(feat)) + feat_tensor = norm(transform_A(feat)) - input_dict = {'label': label_tensor, 'inst': inst_tensor, 'image': image_tensor, - 'feat': feat_tensor, 'path': label_path} + input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor, + 'feat': feat_tensor, 'path': A_path} return input_dict def __len__(self): - return len(self.label_paths) + return len(self.A_paths) def name(self): return 'AlignedDataset'
\ No newline at end of file diff --git a/models/models.py b/models/models.py index 351483c..0ba442f 100755 --- a/models/models.py +++ b/models/models.py @@ -3,8 +3,12 @@ import torch def create_model(opt): - from .pix2pixHD_model import Pix2PixHDModel - model = Pix2PixHDModel() + if opt.model == 'pix2pixHD': + from .pix2pixHD_model import Pix2PixHDModel + model = Pix2PixHDModel() + else: + from .ui_model import UIModel + model = UIModel() model.initialize(opt) print("model [%s] was created" % (model.name())) diff --git a/models/ui_model.py b/models/ui_model.py new file mode 100755 index 0000000..056a335 --- /dev/null +++ b/models/ui_model.py @@ -0,0 +1,349 @@ +### Copyright (C) 2017 NVIDIA Corporation. All rights reserved. +### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). +import torch +from torch.autograd import Variable +from collections import OrderedDict +import numpy as np +import os +from PIL import Image +import util.util as util +from .base_model import BaseModel +from . import networks + +class UIModel(BaseModel): + def name(self): + return 'UIModel' + + def initialize(self, opt): + assert(not opt.isTrain) + BaseModel.initialize(self, opt) + self.use_features = opt.instance_feat or opt.label_feat + + netG_input_nc = opt.label_nc + if not opt.no_instance: + netG_input_nc += 1 + if self.use_features: + netG_input_nc += opt.feat_num + + self.netG = networks.define_G(netG_input_nc, opt.output_nc, opt.ngf, opt.netG, + opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers, + opt.n_blocks_local, opt.norm, gpu_ids=self.gpu_ids) + self.load_network(self.netG, 'G', opt.which_epoch) + + print('---------- Networks initialized -------------') + + def toTensor(self, img, normalize=False): + tensor = torch.from_numpy(np.array(img, np.int32, copy=False)) + tensor = tensor.view(1, img.size[1], img.size[0], len(img.mode)) + tensor = tensor.transpose(1, 2).transpose(1, 3).contiguous() + if normalize: + return (tensor.float()/255.0 - 0.5) / 0.5 + return tensor.float() + + def load_image(self, label_path, inst_path, feat_path): + opt = self.opt + # read label map + label_img = Image.open(label_path) + if label_path.find('face') != -1: + label_img = label_img.convert('L') + ow, oh = label_img.size + w = opt.loadSize + h = int(w * oh / ow) + label_img = label_img.resize((w, h), Image.NEAREST) + label_map = self.toTensor(label_img) + + # onehot vector input for label map + self.label_map = label_map.cuda() + oneHot_size = (1, opt.label_nc, h, w) + input_label = self.Tensor(torch.Size(oneHot_size)).zero_() + self.input_label = input_label.scatter_(1, label_map.long().cuda(), 1.0) + + # read instance map + if not opt.no_instance: + inst_img = Image.open(inst_path) + inst_img = inst_img.resize((w, h), Image.NEAREST) + self.inst_map = self.toTensor(inst_img).cuda() + self.edge_map = self.get_edges(self.inst_map) + self.net_input = Variable(torch.cat((self.input_label, self.edge_map), dim=1), volatile=True) + else: + self.net_input = Variable(self.input_label, volatile=True) + + self.features_clustered = np.load(feat_path).item() + self.object_map = self.inst_map if opt.instance_feat else self.label_map + + object_np = self.object_map.cpu().numpy().astype(int) + self.feat_map = self.Tensor(1, opt.feat_num, h, w).zero_() + self.cluster_indices = np.zeros(self.opt.label_nc, np.uint8) + for i in np.unique(object_np): + label = i if i < 1000 else i//1000 + if label in self.features_clustered: + feat = self.features_clustered[label] + np.random.seed(i+1) + cluster_idx = np.random.randint(0, feat.shape[0]) + self.cluster_indices[label] = cluster_idx + idx = (self.object_map == i).nonzero() + self.set_features(idx, feat, cluster_idx) + + self.net_input_original = self.net_input.clone() + self.label_map_original = self.label_map.clone() + self.feat_map_original = self.feat_map.clone() + if not opt.no_instance: + self.inst_map_original = self.inst_map.clone() + + def reset(self): + self.net_input = self.net_input_prev = self.net_input_original.clone() + self.label_map = self.label_map_prev = self.label_map_original.clone() + self.feat_map = self.feat_map_prev = self.feat_map_original.clone() + if not self.opt.no_instance: + self.inst_map = self.inst_map_prev = self.inst_map_original.clone() + self.object_map = self.inst_map if self.opt.instance_feat else self.label_map + + def undo(self): + self.net_input = self.net_input_prev + self.label_map = self.label_map_prev + self.feat_map = self.feat_map_prev + if not self.opt.no_instance: + self.inst_map = self.inst_map_prev + self.object_map = self.inst_map if self.opt.instance_feat else self.label_map + + # get boundary map from instance map + def get_edges(self, t): + edge = torch.cuda.ByteTensor(t.size()).zero_() + edge[:,:,:,1:] = edge[:,:,:,1:] | (t[:,:,:,1:] != t[:,:,:,:-1]) + edge[:,:,:,:-1] = edge[:,:,:,:-1] | (t[:,:,:,1:] != t[:,:,:,:-1]) + edge[:,:,1:,:] = edge[:,:,1:,:] | (t[:,:,1:,:] != t[:,:,:-1,:]) + edge[:,:,:-1,:] = edge[:,:,:-1,:] | (t[:,:,1:,:] != t[:,:,:-1,:]) + return edge.float() + + # change the label at the source position to the label at the target position + def change_labels(self, click_src, click_tgt): + y_src, x_src = click_src[0], click_src[1] + y_tgt, x_tgt = click_tgt[0], click_tgt[1] + label_src = int(self.label_map[0, 0, y_src, x_src]) + inst_src = self.inst_map[0, 0, y_src, x_src] + label_tgt = int(self.label_map[0, 0, y_tgt, x_tgt]) + inst_tgt = self.inst_map[0, 0, y_tgt, x_tgt] + + idx_src = (self.inst_map == inst_src).nonzero() + # need to change 3 things: label map, instance map, and feature map + if idx_src.shape: + # backup current maps + self.backup_current_state() + + # change both the label map and the network input + self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt + self.net_input[idx_src[:,0], idx_src[:,1] + label_src, idx_src[:,2], idx_src[:,3]] = 0 + self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1 + + # update the instance map (and the network input) + if inst_tgt > 1000: + # if different instances have different ids, give the new object a new id + tgt_indices = (self.inst_map > label_tgt * 1000) & (self.inst_map < (label_tgt+1) * 1000) + inst_tgt = self.inst_map[tgt_indices].max() + 1 + self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = inst_tgt + self.net_input[:,-1,:,:] = self.get_edges(self.inst_map) + + # also copy the source features to the target position + idx_tgt = (self.inst_map == inst_tgt).nonzero() + if idx_tgt.shape: + self.copy_features(idx_src, idx_tgt[0,:]) + + self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) + + # add strokes of target label in the image + def add_strokes(self, click_src, label_tgt, bw, save): + # get the region of the new strokes (bw is the brush width) + size = self.net_input.size() + h, w = size[2], size[3] + idx_src = torch.LongTensor(bw**2, 4).fill_(0) + for i in range(bw): + idx_src[i*bw:(i+1)*bw, 2] = min(h-1, max(0, click_src[0]-bw//2 + i)) + for j in range(bw): + idx_src[i*bw+j, 3] = min(w-1, max(0, click_src[1]-bw//2 + j)) + idx_src = idx_src.cuda() + + # again, need to update 3 things + if idx_src.shape: + # backup current maps + if save: + self.backup_current_state() + + # update the label map (and the network input) in the stroke region + self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt + for k in range(self.opt.label_nc): + self.net_input[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = 0 + self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1 + + # update the instance map (and the network input) + self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt + self.net_input[:,-1,:,:] = self.get_edges(self.inst_map) + + # also update the features if available + if self.opt.instance_feat: + feat = self.features_clustered[label_tgt] + #np.random.seed(label_tgt+1) + #cluster_idx = np.random.randint(0, feat.shape[0]) + cluster_idx = self.cluster_indices[label_tgt] + self.set_features(idx_src, feat, cluster_idx) + + self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) + + # add an object to the clicked position with selected style + def add_objects(self, click_src, label_tgt, mask, style_id=0): + y, x = click_src[0], click_src[1] + mask = np.transpose(mask, (2, 0, 1))[np.newaxis,...] + idx_src = torch.from_numpy(mask).cuda().nonzero() + idx_src[:,2] += y + idx_src[:,3] += x + + # backup current maps + self.backup_current_state() + + # update label map + self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt + for k in range(self.opt.label_nc): + self.net_input[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = 0 + self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1 + + # update instance map + self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt + self.net_input[:,-1,:,:] = self.get_edges(self.inst_map) + + # update feature map + self.set_features(idx_src, self.feat, style_id) + + self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) + + def single_forward(self, net_input, feat_map): + net_input = torch.cat((net_input, feat_map), dim=1) + fake_image = self.netG.forward(net_input) + + if fake_image.size()[0] == 1: + return fake_image.data[0] + return fake_image.data + + + # generate all outputs for different styles + def style_forward(self, click_pt, style_id=-1): + if click_pt is None: + self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) + self.crop = None + self.mask = None + else: + instToChange = int(self.object_map[0, 0, click_pt[0], click_pt[1]]) + self.instToChange = instToChange + label = instToChange if instToChange < 1000 else instToChange//1000 + self.feat = self.features_clustered[label] + self.fake_image = [] + self.mask = self.object_map == instToChange + idx = self.mask.nonzero() + self.get_crop_region(idx) + if idx.size(): + if style_id == -1: + (min_y, min_x, max_y, max_x) = self.crop + ### original + for cluster_idx in range(self.opt.multiple_output): + self.set_features(idx, self.feat, cluster_idx) + fake_image = self.single_forward(self.net_input, self.feat_map) + fake_image = util.tensor2im(fake_image[:,min_y:max_y,min_x:max_x]) + self.fake_image.append(fake_image) + """### To speed up previewing different style results, either crop or downsample the label maps + if instToChange > 1000: + (min_y, min_x, max_y, max_x) = self.crop + ### crop + _, _, h, w = self.net_input.size() + offset = 512 + y_start, x_start = max(0, min_y-offset), max(0, min_x-offset) + y_end, x_end = min(h, (max_y + offset)), min(w, (max_x + offset)) + y_region = slice(y_start, y_start+(y_end-y_start)//16*16) + x_region = slice(x_start, x_start+(x_end-x_start)//16*16) + net_input = self.net_input[:,:,y_region,x_region] + for cluster_idx in range(self.opt.multiple_output): + self.set_features(idx, self.feat, cluster_idx) + fake_image = self.single_forward(net_input, self.feat_map[:,:,y_region,x_region]) + fake_image = util.tensor2im(fake_image[:,min_y-y_start:max_y-y_start,min_x-x_start:max_x-x_start]) + self.fake_image.append(fake_image) + else: + ### downsample + (min_y, min_x, max_y, max_x) = [crop//2 for crop in self.crop] + net_input = self.net_input[:,:,::2,::2] + size = net_input.size() + net_input_batch = net_input.expand(self.opt.multiple_output, size[1], size[2], size[3]) + for cluster_idx in range(self.opt.multiple_output): + self.set_features(idx, self.feat, cluster_idx) + feat_map = self.feat_map[:,:,::2,::2] + if cluster_idx == 0: + feat_map_batch = feat_map + else: + feat_map_batch = torch.cat((feat_map_batch, feat_map), dim=0) + fake_image_batch = self.single_forward(net_input_batch, feat_map_batch) + for i in range(self.opt.multiple_output): + self.fake_image.append(util.tensor2im(fake_image_batch[i,:,min_y:max_y,min_x:max_x]))""" + + else: + self.set_features(idx, self.feat, style_id) + self.cluster_indices[label] = style_id + self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) + + def backup_current_state(self): + self.net_input_prev = self.net_input.clone() + self.label_map_prev = self.label_map.clone() + self.inst_map_prev = self.inst_map.clone() + self.feat_map_prev = self.feat_map.clone() + + # crop the ROI and get the mask of the object + def get_crop_region(self, idx): + size = self.net_input.size() + h, w = size[2], size[3] + min_y, min_x = idx[:,2].min(), idx[:,3].min() + max_y, max_x = idx[:,2].max(), idx[:,3].max() + crop_min = 128 + if max_y - min_y < crop_min: + min_y = max(0, (max_y + min_y) // 2 - crop_min // 2) + max_y = min(h-1, min_y + crop_min) + if max_x - min_x < crop_min: + min_x = max(0, (max_x + min_x) // 2 - crop_min // 2) + max_x = min(w-1, min_x + crop_min) + self.crop = (min_y, min_x, max_y, max_x) + self.mask = self.mask[:,:, min_y:max_y, min_x:max_x] + + # update the feature map once a new object is added or the label is changed + def update_features(self, cluster_idx, mask=None, click_pt=None): + self.feat_map_prev = self.feat_map.clone() + # adding a new object + if mask is not None: + y, x = click_pt[0], click_pt[1] + mask = np.transpose(mask, (2,0,1))[np.newaxis,...] + idx = torch.from_numpy(mask).cuda().nonzero() + idx[:,2] += y + idx[:,3] += x + # changing the label of an existing object + else: + idx = (self.object_map == self.instToChange).nonzero() + + # update feature map + self.set_features(idx, self.feat, cluster_idx) + + # set the class features to the target feature + def set_features(self, idx, feat, cluster_idx): + for k in range(self.opt.feat_num): + self.feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k] + + # copy the features at the target position to the source position + def copy_features(self, idx_src, idx_tgt): + for k in range(self.opt.feat_num): + val = self.feat_map[idx_tgt[0], idx_tgt[1] + k, idx_tgt[2], idx_tgt[3]] + self.feat_map[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = val + + def get_current_visuals(self, getLabel=False): + mask = self.mask + if self.mask is not None: + mask = np.transpose(self.mask[0].cpu().float().numpy(), (1,2,0)).astype(np.uint8) + + dict_list = [('fake_image', self.fake_image), ('mask', mask)] + + if getLabel: # only output label map if needed to save bandwidth + label = util.tensor2label(self.net_input.data[0], self.opt.label_nc) + dict_list += [('label', label)] + + return OrderedDict(dict_list)
\ No newline at end of file diff --git a/options/base_options.py b/options/base_options.py index 863c061..de831fe 100755 --- a/options/base_options.py +++ b/options/base_options.py @@ -15,6 +15,7 @@ class BaseOptions(): self.parser.add_argument('--name', type=str, default='label2city', help='name of the experiment. It decides where to store samples and models') self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') + self.parser.add_argument('--model', type=str, default='pix2pixHD', help='which model to use') self.parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization') self.parser.add_argument('--use_dropout', action='store_true', help='use dropout for the generator') |
