summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rwxr-xr-xmodels/pix2pixHD_model.py16
-rwxr-xr-xtrain.py15
2 files changed, 22 insertions, 9 deletions
diff --git a/models/pix2pixHD_model.py b/models/pix2pixHD_model.py
index 631a10f..79ebabd 100755
--- a/models/pix2pixHD_model.py
+++ b/models/pix2pixHD_model.py
@@ -11,7 +11,13 @@ from . import networks
class Pix2PixHDModel(BaseModel):
def name(self):
return 'Pix2PixHDModel'
-
+
+ def init_loss_filter(self, use_gan_feat_loss, use_vgg_loss):
+ flags = (True, use_gan_feat_loss, use_vgg_loss, True, True)
+ def loss_filter(g_gan, g_gan_feat, g_vgg, d_real, d_fake):
+ return [l for (l,f) in zip((g_gan,g_gan_feat,g_vgg,d_real,d_fake),flags) if f]
+ return loss_filter
+
def initialize(self, opt):
BaseModel.initialize(self, opt)
if opt.resize_or_crop != 'none': # when training at full res this causes OOM
@@ -20,7 +26,6 @@ class Pix2PixHDModel(BaseModel):
self.use_features = opt.instance_feat or opt.label_feat
self.gen_features = self.use_features and not self.opt.load_features
input_nc = opt.label_nc if opt.label_nc != 0 else 3
-
##### define networks
# Generator network
netG_input_nc = input_nc
@@ -65,13 +70,16 @@ class Pix2PixHDModel(BaseModel):
self.old_lr = opt.lr
# define loss functions
+ self.loss_filter = self.init_loss_filter(not opt.no_ganFeat_loss, not opt.no_vgg_loss)
+
self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
self.criterionFeat = torch.nn.L1Loss()
if not opt.no_vgg_loss:
self.criterionVGG = networks.VGGLoss(self.gpu_ids)
+
# Names so we can breakout loss
- self.loss_names = ['G_GAN', 'G_GAN_Feat', 'G_VGG', 'D_real', 'D_fake']
+ self.loss_names = self.loss_filter('G_GAN','G_GAN_Feat','G_VGG','D_real', 'D_fake')
# initialize optimizers
# optimizer G
@@ -175,7 +183,7 @@ class Pix2PixHDModel(BaseModel):
loss_G_VGG = self.criterionVGG(fake_image, real_image) * self.opt.lambda_feat
# Only return the fake_B image if necessary to save BW
- return [ [ loss_G_GAN, loss_G_GAN_Feat, loss_G_VGG, loss_D_real, loss_D_fake ], None if not infer else fake_image ]
+ return [ self.loss_filter( loss_G_GAN, loss_G_GAN_Feat, loss_G_VGG, loss_D_real, loss_D_fake ), None if not infer else fake_image ]
def inference(self, label, inst):
# Encode Inputs
diff --git a/train.py b/train.py
index 231662c..ae3095f 100755
--- a/train.py
+++ b/train.py
@@ -38,7 +38,12 @@ print('#training images = %d' % dataset_size)
model = create_model(opt)
visualizer = Visualizer(opt)
-total_steps = (start_epoch-1) * dataset_size + epoch_iter
+total_steps = (start_epoch-1) * dataset_size + epoch_iter
+
+display_delta = total_steps % opt.display_freq
+print_delta = total_steps % opt.print_freq
+save_delta = total_steps % opt.save_latest_freq
+
for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
if epoch != start_epoch:
@@ -49,7 +54,7 @@ for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_iter += opt.batchSize
# whether to collect output images
- save_fake = total_steps % opt.display_freq == 0
+ save_fake = total_steps % opt.display_freq == display_delta
############## Forward Pass ######################
losses, generated = model(Variable(data['label']), Variable(data['inst']),
@@ -61,7 +66,7 @@ for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
# calculate final loss scalar
loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5
- loss_G = loss_dict['G_GAN'] + loss_dict['G_GAN_Feat'] + loss_dict['G_VGG']
+ loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0)
############### Backward Pass ####################
# update generator weights
@@ -78,7 +83,7 @@ for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
############## Display results and errors ##########
### print out errors
- if total_steps % opt.print_freq == 0:
+ if total_steps % opt.print_freq == print_delta:
errors = {k: v.data[0] if not isinstance(v, int) else v for k, v in loss_dict.items()}
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
@@ -92,7 +97,7 @@ for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
visualizer.display_current_results(visuals, epoch, total_steps)
### save latest model
- if total_steps % opt.save_latest_freq == 0:
+ if total_steps % opt.save_latest_freq == save_delta:
print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps))
model.module.save('latest')
np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')