from __future__ import print_function import torch import numpy as np from PIL import Image import inspect, re import numpy as np import os import collections # Converts a Tensor into a Numpy array # |imtype|: the desired type of the converted numpy array def tensor2im(image_tensor, imtype=np.uint8): image_numpy = image_tensor[0].cpu().float().numpy() if image_numpy.shape[0] == 1: image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 return image_numpy.astype(imtype) def diagnose_network(net, name='network'): mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def save_image(image_numpy, image_path): image_pil = Image.fromarray(image_numpy) image_pil.save(image_path) def info(object, spacing=10, collapse=1): """Print methods and doc strings. Takes module, class, list, dictionary, or string.""" methodList = [e for e in dir(object) if isinstance(getattr(object, e), collections.Callable)] processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s) print( "\n".join(["%s %s" % (method.ljust(spacing), processFunc(str(getattr(object, method).__doc__))) for method in methodList]) ) def varname(p): for line in inspect.getframeinfo(inspect.currentframe().f_back)[3]: m = re.search(r'\bvarname\s*\(\s*([A-Za-z_][A-Za-z0-9_]*)\s*\)', line) if m: return m.group(1) def print_numpy(x, val=True, shp=False): x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path)