from __future__ import print_function import torch import numpy as np from PIL import Image import os # Converts a Tensor into a Numpy array # |imtype|: the desired type of the converted numpy array def tensor2im(image_tensor, imtype=np.uint8): image_numpy = image_tensor[0].cpu().float().numpy() if image_numpy.shape[0] == 1: image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 return image_numpy.astype(imtype) def diagnose_network(net, name='network'): mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def save_image(image_numpy, image_path): image_pil = Image.fromarray(image_numpy) image_pil.save(image_path) def print_numpy(x, val=True, shp=False): x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path) def crop_image(img, xy, scale_factor): '''Crop the image around the tuple xy Inputs: ------- img: Image opened with PIL.Image xy: tuple with relative (x,y) position of the center of the cropped image x and y shall be between 0 and 1 scale_factor: the ratio between the original image's size and the cropped image's size ''' center = (img.size[0] * xy[0], img.size[1] * xy[1]) new_size = (img.size[0] / scale_factor, img.size[1] / scale_factor) left = max (0, (int) (center[0] - new_size[0] / 2)) right = min (img.size[0], (int) (center[0] + new_size[0] / 2)) upper = max (0, (int) (center[1] - new_size[1] / 2)) lower = min (img.size[1], (int) (center[1] + new_size[1] / 2)) cropped_img = img.crop((left, upper, right, lower)) return cropped_img