dataset=$1 #/home/lens/Desktop/dataset-random.pl if [ ! -d "./datasets/$dataset/" ]; then python datasets/combine_A_and_B.py \ --fold_A "$HOME/Desktop/thumbs/$dataset/A" \ --fold_B "$HOME/Desktop/thumbs/$dataset/B" \ --fold_AB "./datasets/$dataset/" fi if [ ! -f "./checkpoints/$dataset/latest_net_G.pth" ]; then python train.py \ --dataroot "./datasets/$dataset" \ --name "$dataset" \ --model pix2pix \ --dataset_mode aligned \ --which_model_netG unet_256 \ --which_direction AtoB \ --loadSize 264 \ --fineSize 256 \ --lambda_B 100 \ --no_lsgan --norm batch --pool_size 0 else python train.py \ --dataroot "./datasets/$dataset" \ --name "$dataset" \ --model pix2pix \ --dataset_mode aligned \ --which_model_netG unet_256 \ --which_direction AtoB \ --loadSize 264 \ --fineSize 256 \ --lambda_B 100 \ --which_epoch latest \ --continue_train \ --no_lsgan --norm batch --pool_size 0 fi #python test.py \ # --dataroot "/home/lens/Desktop/thumbs/$dataset/A/train/" \ # --name "$dataset" \ # --start_img "/home/lens/Desktop/thumbs/$dataset/A/train/frame_1008.png" \ # --how_many 1000 \ # --model test \ # --aspect_ratio 1.777777 \ # --which_model_netG unet_256 \ # --which_direction AtoB \ # --dataset_mode recursive \ # --norm batch # --loadSize 256 \ # --fineSize 256 \