from .base_options import BaseOptions class TrainOptions(BaseOptions): def initialize(self): BaseOptions.initialize(self) self.parser.add_argument('--display_freq', type=int, default=100, help='frequency of showing training results on screen') self.parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console') self.parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results') self.parser.add_argument('--save_epoch_freq', type=int, default=5, help='frequency of saving checkpoints at the end of epochs') self.parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') self.parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') self.parser.add_argument('--which_epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') self.parser.add_argument('--niter', type=int, default=100, help='# of iter at starting learning rate') self.parser.add_argument('--niter_decay', type=int, default=100, help='# of iter to linearly decay learning rate to zero') self.parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam') self.parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam') self.parser.add_argument('--no_lsgan', action='store_true', help='do *not* use least square GAN, if false, use vanilla GAN') self.parser.add_argument('--lambda_A', type=float, default=10.0, help='weight for cycle loss (A -> B -> A)') self.parser.add_argument('--lambda_B', type=float, default=10.0, help='weight for cycle loss (B -> A -> B)') self.parser.add_argument('--pool_size', type=int, default=50, help='the size of image buffer that stores previously generated images') self.parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/') self.parser.add_argument('--no_flip' , action='store_true', help='if specified, do not flip the images for data argumentation') # NOT-IMPLEMENTED self.parser.add_argument('--preprocessing', type=str, default='resize_and_crop', help='resizing/cropping strategy') self.isTrain = True