import random import torch.utils.data import torchvision.transforms as transforms from data.base_data_loader import BaseDataLoader from data.image_folder import ImageFolder from pdb import set_trace as st from builtins import object class PairedData(object): def __init__(self, data_loader, fineSize): self.data_loader = data_loader self.fineSize = fineSize # st() def __iter__(self): self.data_loader_iter = iter(self.data_loader) return self def __next__(self): AB, AB_paths = next(self.data_loader_iter) w_total = AB.size(3) w = int(w_total / 2) h = AB.size(2) w_offset = random.randint(0, max(0, w - self.fineSize - 1)) h_offset = random.randint(0, max(0, h - self.fineSize - 1)) A = AB[:, :, h_offset:h_offset + self.fineSize, w_offset:w_offset + self.fineSize] B = AB[:, :, h_offset:h_offset + self.fineSize, w + w_offset:w + w_offset + self.fineSize] return {'A': A, 'A_paths': AB_paths, 'B': B, 'B_paths': AB_paths} class AlignedDataLoader(BaseDataLoader): def initialize(self, opt): BaseDataLoader.initialize(self, opt) self.fineSize = opt.fineSize transform = transforms.Compose([ # TODO: Scale #transforms.Scale((opt.loadSize * 2, opt.loadSize)), #transforms.CenterCrop(opt.fineSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # Dataset A dataset = ImageFolder(root=opt.dataroot + '/' + opt.phase, transform=transform, return_paths=True) data_loader = torch.utils.data.DataLoader( dataset, batch_size=self.opt.batchSize, shuffle=not self.opt.serial_batches, num_workers=int(self.opt.nThreads)) self.dataset = dataset self.paired_data = PairedData(data_loader, opt.fineSize) def name(self): return 'AlignedDataLoader' def load_data(self): return self.paired_data def __len__(self): return len(self.dataset)