import os from options.test_options import TestOptions from data import CreateRecursiveDataLoader from models import create_model from util.visualizer import Visualizer from util.util import mkdirs, crop_image from util import html from shutil import move, copyfile from PIL import Image, ImageOps from skimage.transform import resize from scipy.misc import imresize from shutil import copyfile, rmtree import numpy as np import cv2 import time import subprocess from time import sleep blur = 3 sigma = 0 canny_lo = 10 canny_hi = 220 frac_a = 0.99 frac_b = 1 - frac_a if __name__ == '__main__': opt = TestOptions().parse() opt.nThreads = 1 # test code only supports nThreads = 1 opt.batchSize = 1 # test code only supports batchSize = 1 opt.serial_batches = True # no shuffle opt.no_flip = True # no flip opt.experiment = opt.start_img.split("/")[-1].split(".")[0] render_dir = opt.results_dir + opt.name + "/exp:" + opt.experiment + "/" if os.path.exists(render_dir): rmtree(render_dir) mkdirs(render_dir) cmd = ("convert", opt.start_img, '-canny', '0x1+10%+30%', render_dir + "frame_00000.png") process = subprocess.Popen(cmd, stdout=subprocess.PIPE) output, error = process.communicate() #copyfile(opt.start_img, render_dir + "frame_00000.png") data_loader = CreateRecursiveDataLoader(opt) dataset = data_loader.load_data() ds = dataset.dataset model = create_model(opt) visualizer = Visualizer(opt) # create website web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch)) webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch)) # test last_im = None for i, data in enumerate(data_loader): if i >= opt.how_many: break model.set_input(data) model.test() visuals = model.get_current_visuals() img_path = model.get_image_paths() print('%04d: process image... %s' % (i, img_path)) ims = visualizer.save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio) im = visuals['fake_B'] tmp_path = render_dir + "frame_{:05d}_tmp.png".format(i+1) edges_path = render_dir + "frame_{:05d}.png".format(i+1) render_path = render_dir + "ren_{:05d}.png".format(i+1) if dataset.name() == 'RecursiveDatasetDataLoader': # print(visuals.keys()) # s = 256 # p = 8 # im = imresize(im, (s-p, s-p), interp='bicubic') # image_pil = Image.fromarray(im) # image_pil = ImageOps.expand(image_pil, p) # image_pil.save(save_path) # copyfile(save_path, final_path) if last_im is not None: tmp_im = im.copy() #array_a = np.multiply(im.astype('float64'), frac_a) #array_b = np.multiply(last_im.astype('float64'), frac_b) #im = np.add(array_a, array_b).astype('uint8') # print(im.shape, im.dtype) last_im = np.roll(tmp_im, 1, axis=1) else: last_im = im.copy().astype('uint8') tmp_im = im.copy().astype('uint8') #print(im.shape, im.dtype) image_pil = Image.fromarray(tmp_im, mode='RGB') image_pil.save(tmp_path) os.rename(tmp_path, render_path) image_pil = Image.fromarray(im, mode='RGB') image_pil = crop_image(image_pil, (0.50, 0.50), 0.5) im = np.asarray(image_pil).astype('uint8') #print(im.shape, im.dtype) opencv_image = im[:, :, ::-1].copy() opencv_image = cv2.GaussianBlur(opencv_image, (blur,blur), sigma) opencv_image = cv2.Canny(opencv_image, canny_lo, canny_hi) cv2.imwrite(tmp_path, opencv_image) os.rename(tmp_path, edges_path) webpage.save() os.remove(render_dir + "frame_00000.png") t = time.time() t /= 60 t %= 525600 video_fn = "{}_{}_canmix_{}frame_{}mix_{}blur_{}sigma_{}lo_{}hi_{}.mp4".format( opt.name, opt.experiment, opt.how_many, frac_a, blur, sigma, canny_lo, canny_hi, int(t)) cmd = ("/usr/bin/ffmpeg", "-i", render_dir + "ren_%05d.png", "-y", "-c:v", "libx264", "-vf", "fps=30", "-pix_fmt", "yuv420p", render_dir + video_fn) process = subprocess.Popen(cmd, stdout=subprocess.PIPE) output, error = process.communicate() print("________") cmd = ("scp", render_dir + video_fn, "jules@asdf.us:asdf/neural/") process = subprocess.Popen(cmd, stdout=subprocess.PIPE) output, error = process.communicate() print("https://asdf.us/neural/" + video_fn)