From b4ee6eafae19ce7fc2e2036acc8532db8c9d186c Mon Sep 17 00:00:00 2001 From: iver56 Date: Tue, 13 Mar 2018 13:15:07 +0100 Subject: Fix multiprocessing for Windows by using the __name__ == '__main__' idiom --- train.py | 97 ++++++++++++++++++++++++++++++++-------------------------------- 1 file changed, 49 insertions(+), 48 deletions(-) (limited to 'train.py') diff --git a/train.py b/train.py index 61b596a..ee8cff1 100644 --- a/train.py +++ b/train.py @@ -4,54 +4,55 @@ from data.data_loader import CreateDataLoader from models.models import create_model from util.visualizer import Visualizer -opt = TrainOptions().parse() -data_loader = CreateDataLoader(opt) -dataset = data_loader.load_data() -dataset_size = len(data_loader) -print('#training images = %d' % dataset_size) - -model = create_model(opt) -visualizer = Visualizer(opt) -total_steps = 0 - -for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): - epoch_start_time = time.time() - iter_data_time = time.time() - epoch_iter = 0 - - for i, data in enumerate(dataset): - iter_start_time = time.time() - if total_steps % opt.print_freq == 0: - t_data = iter_start_time - iter_data_time - visualizer.reset() - total_steps += opt.batchSize - epoch_iter += opt.batchSize - model.set_input(data) - model.optimize_parameters() - - if total_steps % opt.display_freq == 0: - save_result = total_steps % opt.update_html_freq == 0 - visualizer.display_current_results(model.get_current_visuals(), epoch, save_result) - - if total_steps % opt.print_freq == 0: - errors = model.get_current_errors() - t = (time.time() - iter_start_time) / opt.batchSize - visualizer.print_current_errors(epoch, epoch_iter, errors, t, t_data) - if opt.display_id > 0: - visualizer.plot_current_errors(epoch, float(epoch_iter) / dataset_size, opt, errors) - - if total_steps % opt.save_latest_freq == 0: - print('saving the latest model (epoch %d, total_steps %d)' % +if __name__ == '__main__': + opt = TrainOptions().parse() + data_loader = CreateDataLoader(opt) + dataset = data_loader.load_data() + dataset_size = len(data_loader) + print('#training images = %d' % dataset_size) + + model = create_model(opt) + visualizer = Visualizer(opt) + total_steps = 0 + + for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): + epoch_start_time = time.time() + iter_data_time = time.time() + epoch_iter = 0 + + for i, data in enumerate(dataset): + iter_start_time = time.time() + if total_steps % opt.print_freq == 0: + t_data = iter_start_time - iter_data_time + visualizer.reset() + total_steps += opt.batchSize + epoch_iter += opt.batchSize + model.set_input(data) + model.optimize_parameters() + + if total_steps % opt.display_freq == 0: + save_result = total_steps % opt.update_html_freq == 0 + visualizer.display_current_results(model.get_current_visuals(), epoch, save_result) + + if total_steps % opt.print_freq == 0: + errors = model.get_current_errors() + t = (time.time() - iter_start_time) / opt.batchSize + visualizer.print_current_errors(epoch, epoch_iter, errors, t, t_data) + if opt.display_id > 0: + visualizer.plot_current_errors(epoch, float(epoch_iter) / dataset_size, opt, errors) + + if total_steps % opt.save_latest_freq == 0: + print('saving the latest model (epoch %d, total_steps %d)' % + (epoch, total_steps)) + model.save('latest') + + iter_data_time = time.time() + if epoch % opt.save_epoch_freq == 0: + print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) model.save('latest') + model.save(epoch) - iter_data_time = time.time() - if epoch % opt.save_epoch_freq == 0: - print('saving the model at the end of epoch %d, iters %d' % - (epoch, total_steps)) - model.save('latest') - model.save(epoch) - - print('End of epoch %d / %d \t Time Taken: %d sec' % - (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) - model.update_learning_rate() + print('End of epoch %d / %d \t Time Taken: %d sec' % + (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) + model.update_learning_rate() -- cgit v1.2.3-70-g09d2