summaryrefslogtreecommitdiff
path: root/test-mogrify.py
diff options
context:
space:
mode:
Diffstat (limited to 'test-mogrify.py')
-rw-r--r--test-mogrify.py145
1 files changed, 72 insertions, 73 deletions
diff --git a/test-mogrify.py b/test-mogrify.py
index 2ffadbb..3365126 100644
--- a/test-mogrify.py
+++ b/test-mogrify.py
@@ -36,96 +36,95 @@ if __name__ == '__main__':
opt.render_dir = render_dir = opt.results_dir + opt.name + "/" + tag + "/"
- print("create render_dir: {}".format(render_dir))
- if os.path.exists(render_dir):
- rmtree(render_dir)
- mkdirs(render_dir)
+ # print("create render_dir: {}".format(render_dir))
+ # if os.path.exists(render_dir):
+ # rmtree(render_dir)
+ # mkdirs(render_dir)
- # cmd = ("convert", opt.start_img, '-canny', '0x1+10%+30%', render_dir + "frame_00000.png")
- # process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
- # output, error = process.communicate()
+ # # cmd = ("convert", opt.start_img, '-canny', '0x1+10%+30%', render_dir + "frame_00000.png")
+ # # process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
+ # # output, error = process.communicate()
- copyfile(opt.start_img, render_dir + "frame_00000.png")
+ # copyfile(opt.start_img, render_dir + "frame_00000.png")
- data_loader = CreateRecursiveDataLoader(opt)
- dataset = data_loader.load_data()
- ds = dataset.dataset
- model = create_model(opt)
- visualizer = Visualizer(opt)
- # create website
- # web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
- # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
- # test
- last_im = None
- for i, data in enumerate(data_loader):
- print(i)
- if i >= opt.how_many:
- break
- model.set_input(data)
- model.test()
- visuals = model.get_current_visuals()
- img_path = model.get_image_paths()
+ # data_loader = CreateRecursiveDataLoader(opt)
+ # dataset = data_loader.load_data()
+ # ds = dataset.dataset
+ # model = create_model(opt)
+ # visualizer = Visualizer(opt)
+ # # create website
+ # # web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
+ # # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
+ # # test
+ # last_im = None
+ # for i, data in enumerate(data_loader):
+ # if i >= opt.how_many:
+ # break
+ # model.set_input(data)
+ # model.test()
+ # visuals = model.get_current_visuals()
+ # img_path = model.get_image_paths()
- if (i % 100) == 0:
- print('%04d: process image... %s' % (i, img_path))
- # ims = visualizer.save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio)
+ # if (i % 20) == 0:
+ # print('%04d: process image... %s' % (i, img_path))
+ # # ims = visualizer.save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio)
- im = visuals['fake_B']
- tmp_path = render_dir + "frame_{:05d}_tmp.png".format(i+1)
- edges_path = render_dir + "frame_{:05d}.png".format(i+1)
- render_path = render_dir + "ren_{:05d}.png".format(i+1)
+ # im = visuals['fake_B']
+ # tmp_path = render_dir + "frame_{:05d}_tmp.png".format(i+1)
+ # edges_path = render_dir + "frame_{:05d}.png".format(i+1)
+ # render_path = render_dir + "ren_{:05d}.png".format(i+1)
- image_pil = Image.fromarray(im, mode='RGB')
- image_pil.save(tmp_path)
- os.rename(tmp_path, render_path)
+ # image_pil = Image.fromarray(im, mode='RGB')
+ # image_pil.save(tmp_path)
+ # os.rename(tmp_path, render_path)
- if dataset.name() == 'RecursiveDatasetDataLoader':
- if data_opt.recursive and last_im is not None:
- tmp_im = im.copy()
+ # if dataset.name() == 'RecursiveDatasetDataLoader':
+ # if data_opt.recursive and last_im is not None:
+ # tmp_im = im.copy()
- frac_a = data_opt.recursive_frac
- frac_b = 1.0 - frac_a
+ # frac_a = data_opt.recursive_frac
+ # frac_b = 1.0 - frac_a
- array_a = np.multiply(im.astype('float64'), frac_a)
- array_b = np.multiply(last_im.astype('float64'), frac_b)
- im = np.add(array_a, array_b).astype('uint8')
- # print(im.shape, im.dtype)
- last_im = np.roll(tmp_im, 1, axis=1)
- else:
- last_im = im.copy().astype('uint8')
- tmp_im = im.copy().astype('uint8')
- #print(im.shape, im.dtype)
+ # array_a = np.multiply(im.astype('float64'), frac_a)
+ # array_b = np.multiply(last_im.astype('float64'), frac_b)
+ # im = np.add(array_a, array_b).astype('uint8')
+ # # print(im.shape, im.dtype)
+ # last_im = np.roll(tmp_im, 1, axis=1)
+ # else:
+ # last_im = im.copy().astype('uint8')
+ # tmp_im = im.copy().astype('uint8')
+ # #print(im.shape, im.dtype)
- image_pil = Image.fromarray(im, mode='RGB')
- im = np.asarray(image_pil).astype('uint8')
- #print(im.shape, im.dtype)
+ # image_pil = Image.fromarray(im, mode='RGB')
+ # im = np.asarray(image_pil).astype('uint8')
+ # #print(im.shape, im.dtype)
- img = im[:, :, ::-1].copy()
+ # img = im[:, :, ::-1].copy()
- if data_opt.clahe is True:
- lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
- l, a, b = cv2.split(lab)
- clahe = cv2.createCLAHE(clipLimit=data_opt.clip_limit, tileGridSize=(8,8))
- l = clahe.apply(l)
- limg = cv2.merge((l,a,b))
- img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
+ # if data_opt.clahe is True:
+ # lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
+ # l, a, b = cv2.split(lab)
+ # clahe = cv2.createCLAHE(clipLimit=data_opt.clip_limit, tileGridSize=(8,8))
+ # l = clahe.apply(l)
+ # limg = cv2.merge((l,a,b))
+ # img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
- if data_opt.posterize is True:
- img = cv2.pyrMeanShiftFiltering(img, data_opt.spatial_window, data_opt.color_window)
- if data_opt.grayscale is True:
- img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- if data_opt.blur is True:
- img = cv2.GaussianBlur(img, (data_opt.blur_radius, data_opt.blur_radius), data_opt.blur_sigma)
- if data_opt.canny is True:
- img = cv2.Canny(img, data_opt.canny_lo, data_opt.canny_hi)
+ # if data_opt.posterize is True:
+ # img = cv2.pyrMeanShiftFiltering(img, data_opt.spatial_window, data_opt.color_window)
+ # if data_opt.grayscale is True:
+ # img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
+ # if data_opt.blur is True:
+ # img = cv2.GaussianBlur(img, (data_opt.blur_radius, data_opt.blur_radius), data_opt.blur_sigma)
+ # if data_opt.canny is True:
+ # img = cv2.Canny(img, data_opt.canny_lo, data_opt.canny_hi)
- cv2.imwrite(tmp_path, img)
- os.rename(tmp_path, edges_path)
+ # cv2.imwrite(tmp_path, img)
+ # os.rename(tmp_path, edges_path)
- webpage.save()
+ # webpage.save()
- os.remove(render_dir + "frame_00000.png")
+ # os.remove(render_dir + "frame_00000.png")
video_fn = tag + "_mogrify.mp4"