summaryrefslogtreecommitdiff
path: root/models
diff options
context:
space:
mode:
Diffstat (limited to 'models')
-rw-r--r--models/base_model.py3
-rw-r--r--models/cycle_gan_model.py88
-rw-r--r--models/networks.py4
-rw-r--r--models/pix2pix_model.py6
4 files changed, 46 insertions, 55 deletions
diff --git a/models/base_model.py b/models/base_model.py
index d62d189..646a014 100644
--- a/models/base_model.py
+++ b/models/base_model.py
@@ -44,13 +44,14 @@ class BaseModel():
save_path = os.path.join(self.save_dir, save_filename)
torch.save(network.cpu().state_dict(), save_path)
if len(gpu_ids) and torch.cuda.is_available():
- network.cuda(device_id=gpu_ids[0]) # network.cuda(device=gpu_ids[0]) for the latest version.
+ network.cuda(device_id=gpu_ids[0]) # network.cuda(device=gpu_ids[0]) for the latest version.
# helper loading function that can be used by subclasses
def load_network(self, network, network_label, epoch_label):
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
save_path = os.path.join(self.save_dir, save_filename)
network.load_state_dict(torch.load(save_path))
+
# update learning rate (called once every epoch)
def update_learning_rate(self):
for scheduler in self.schedulers:
diff --git a/models/cycle_gan_model.py b/models/cycle_gan_model.py
index ff7330b..71a447d 100644
--- a/models/cycle_gan_model.py
+++ b/models/cycle_gan_model.py
@@ -90,13 +90,15 @@ class CycleGANModel(BaseModel):
self.real_B = Variable(self.input_B)
def test(self):
- self.real_A = Variable(self.input_A, volatile=True)
- self.fake_B = self.netG_A.forward(self.real_A)
- self.rec_A = self.netG_B.forward(self.fake_B)
+ real_A = Variable(self.input_A, volatile=True)
+ fake_B = self.netG_A.forward(real_A)
+ self.rec_A = self.netG_B.forward(fake_B).data
+ self.fake_B = fake_B.data
- self.real_B = Variable(self.input_B, volatile=True)
- self.fake_A = self.netG_B.forward(self.real_B)
- self.rec_B = self.netG_A.forward(self.fake_A)
+ real_B = Variable(self.input_B, volatile=True)
+ fake_A = self.netG_B.forward(real_B)
+ self.rec_B = self.netG_A.forward(fake_A).data
+ self.fake_A = self.fake_A.data
# get image paths
def get_image_paths(self):
@@ -117,11 +119,13 @@ class CycleGANModel(BaseModel):
def backward_D_A(self):
fake_B = self.fake_B_pool.query(self.fake_B)
- self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)
+ loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)
+ self.loss_D_A = loss_D_A.data[0]
def backward_D_B(self):
fake_A = self.fake_A_pool.query(self.fake_A)
- self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)
+ loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)
+ self.loss_D_B = loss_D_B.data[0]
def backward_G(self):
lambda_idt = self.opt.identity
@@ -135,53 +139,49 @@ class CycleGANModel(BaseModel):
# G_B should be identity if real_A is fed.
idt_B = self.netG_B.forward(self.real_A)
loss_idt_B = self.criterionIdt(idt_B, self.real_A) * lambda_A * lambda_idt
-
+
self.idt_A = idt_A.data
self.idt_B = idt_B.data
self.loss_idt_A = loss_idt_A.data[0]
- self.loss_idt_B = loss_idt_B.data[0]
-
+ self.loss_idt_B = loss_idt_B.data[0]
+
else:
loss_idt_A = 0
loss_idt_B = 0
self.loss_idt_A = 0
self.loss_idt_B = 0
- # GAN loss
- # D_A(G_A(A))
+ # GAN loss D_A(G_A(A))
fake_B = self.netG_A.forward(self.real_A)
pred_fake = self.netD_A.forward(fake_B)
loss_G_A = self.criterionGAN(pred_fake, True)
-
- # D_B(G_B(B))
+
+ # GAN loss D_B(G_B(B))
fake_A = self.netG_B.forward(self.real_B)
pred_fake = self.netD_B.forward(fake_A)
loss_G_B = self.criterionGAN(pred_fake, True)
-
+
# Forward cycle loss
rec_A = self.netG_B.forward(fake_B)
loss_cycle_A = self.criterionCycle(rec_A, self.real_A) * lambda_A
-
+
# Backward cycle loss
rec_B = self.netG_A.forward(fake_A)
loss_cycle_B = self.criterionCycle(rec_B, self.real_B) * lambda_B
-
+
# combined loss
loss_G = loss_G_A + loss_G_B + loss_cycle_A + loss_cycle_B + loss_idt_A + loss_idt_B
loss_G.backward()
-
+
self.fake_B = fake_B.data
self.fake_A = fake_A.data
self.rec_A = rec_A.data
self.rec_B = rec_B.data
-
+
self.loss_G_A = loss_G_A.data[0]
self.loss_G_B = loss_G_B.data[0]
self.loss_cycle_A = loss_cycle_A.data[0]
self.loss_cycle_B = loss_cycle_B.data[0]
-
-
-
def optimize_parameters(self):
# forward
@@ -200,36 +200,26 @@ class CycleGANModel(BaseModel):
self.optimizer_D_B.step()
def get_current_errors(self):
- D_A = self.loss_D_A.data[0]
- G_A = self.loss_G_A
- Cyc_A = self.loss_cycle_A
- D_B = self.loss_D_B.data[0]
- G_B = self.loss_G_B
- Cyc_B = self.loss_cycle_B
+ ret_errors = OrderedDict([('D_A', self.loss_D_A), ('G_A', self.loss_G_A), ('Cyc_A', self.loss_cycle_A),
+ ('D_B', self.loss_D_B), ('G_B', self.loss_G_B), ('Cyc_B', self.loss_cycle_B)])
if self.opt.identity > 0.0:
- idt_A = self.loss_idt_A
- idt_B = self.loss_idt_B
- return OrderedDict([('D_A', D_A), ('G_A', G_A), ('Cyc_A', Cyc_A), ('idt_A', idt_A),
- ('D_B', D_B), ('G_B', G_B), ('Cyc_B', Cyc_B), ('idt_B', idt_B)])
- else:
- return OrderedDict([('D_A', D_A), ('G_A', G_A), ('Cyc_A', Cyc_A),
- ('D_B', D_B), ('G_B', G_B), ('Cyc_B', Cyc_B)])
+ ret_errors['idt_A'] = self.loss_idt_A
+ ret_errors['idt_B'] = self.loss_idt_B
+ return ret_errors
def get_current_visuals(self):
- real_A = util.tensor2im(self.real_A.data)
- fake_B = util.tensor2im(self.fake_B.data)
- rec_A = util.tensor2im(self.rec_A.data)
- real_B = util.tensor2im(self.real_B.data)
- fake_A = util.tensor2im(self.fake_A.data)
- rec_B = util.tensor2im(self.rec_B.data)
+ real_A = util.tensor2im(self.input_A)
+ fake_B = util.tensor2im(self.fake_B)
+ rec_A = util.tensor2im(self.rec_A)
+ real_B = util.tensor2im(self.input_B)
+ fake_A = util.tensor2im(self.fake_A)
+ rec_B = util.tensor2im(self.rec_B)
+ ret_visuals = OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('rec_A', rec_A),
+ ('real_B', real_B), ('fake_A', fake_A), ('rec_B', rec_B)])
if self.opt.isTrain and self.opt.identity > 0.0:
- idt_A = util.tensor2im(self.idt_A)
- idt_B = util.tensor2im(self.idt_B)
- return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('rec_A', rec_A), ('idt_B', idt_B),
- ('real_B', real_B), ('fake_A', fake_A), ('rec_B', rec_B), ('idt_A', idt_A)])
- else:
- return OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('rec_A', rec_A),
- ('real_B', real_B), ('fake_A', fake_A), ('rec_B', rec_B)])
+ ret_visuals['idt_A'] = util.tensor2im(self.idt_A)
+ ret_visuals['idt_B'] = util.tensor2im(self.idt_B)
+ return ret_visuals
def save(self, label):
self.save_network(self.netG_A, 'G_A', label, self.gpu_ids)
diff --git a/models/networks.py b/models/networks.py
index 949659d..d071ac4 100644
--- a/models/networks.py
+++ b/models/networks.py
@@ -118,7 +118,7 @@ def define_G(input_nc, output_nc, ngf, which_model_netG, norm='batch', use_dropo
else:
raise NotImplementedError('Generator model name [%s] is not recognized' % which_model_netG)
if len(gpu_ids) > 0:
- netG.cuda(device_id=gpu_ids[0]) # or netG.cuda(device=gpu_ids[0]) for latest version.
+ netG.cuda(device_id=gpu_ids[0]) # or netG.cuda(device=gpu_ids[0]) for latest version.
init_weights(netG, init_type=init_type)
return netG
@@ -139,7 +139,7 @@ def define_D(input_nc, ndf, which_model_netD,
raise NotImplementedError('Discriminator model name [%s] is not recognized' %
which_model_netD)
if use_gpu:
- netD.cuda(device_id=gpu_ids[0]) # or netD.cuda(device=gpu_ids[0]) for latest version.
+ netD.cuda(device_id=gpu_ids[0]) # or netD.cuda(device=gpu_ids[0]) for latest version.
init_weights(netD, init_type=init_type)
return netD
diff --git a/models/pix2pix_model.py b/models/pix2pix_model.py
index 18ba53f..8cd494f 100644
--- a/models/pix2pix_model.py
+++ b/models/pix2pix_model.py
@@ -87,12 +87,12 @@ class Pix2PixModel(BaseModel):
# Fake
# stop backprop to the generator by detaching fake_B
fake_AB = self.fake_AB_pool.query(torch.cat((self.real_A, self.fake_B), 1))
- self.pred_fake = self.netD.forward(fake_AB.detach())
- self.loss_D_fake = self.criterionGAN(self.pred_fake, False)
+ pred_fake = self.netD.forward(fake_AB.detach())
+ self.loss_D_fake = self.criterionGAN(pred_fake, False)
# Real
real_AB = torch.cat((self.real_A, self.real_B), 1)
- self.pred_real = self.netD.forward(real_AB)
+ pred_real = self.netD.forward(real_AB)
self.loss_D_real = self.criterionGAN(self.pred_real, True)
# Combined loss