summaryrefslogtreecommitdiff
path: root/data/aligned_data_loader.py
diff options
context:
space:
mode:
Diffstat (limited to 'data/aligned_data_loader.py')
-rw-r--r--data/aligned_data_loader.py19
1 files changed, 15 insertions, 4 deletions
diff --git a/data/aligned_data_loader.py b/data/aligned_data_loader.py
index 039c113..d1d4572 100644
--- a/data/aligned_data_loader.py
+++ b/data/aligned_data_loader.py
@@ -1,4 +1,5 @@
import random
+import numpy as np
import torch.utils.data
import torchvision.transforms as transforms
from data.base_data_loader import BaseDataLoader
@@ -8,10 +9,11 @@ from pdb import set_trace as st
from builtins import object
class PairedData(object):
- def __init__(self, data_loader, fineSize, max_dataset_size):
+ def __init__(self, data_loader, fineSize, max_dataset_size, flip):
self.data_loader = data_loader
self.fineSize = fineSize
self.max_dataset_size = max_dataset_size
+ self.flip = flip
# st()
def __iter__(self):
@@ -36,6 +38,14 @@ class PairedData(object):
B = AB[:, :, h_offset:h_offset + self.fineSize,
w + w_offset:w + w_offset + self.fineSize]
+ if self.flip and random.random() < 0.5:
+ idx = [i for i in range(A.size(3) - 1, -1, -1)]
+ idx = torch.LongTensor(idx)
+ A = A.index_select(3, idx)
+ B = B.index_select(3, idx)
+
+
+
return {'A': A, 'A_paths': AB_paths, 'B': B, 'B_paths': AB_paths}
@@ -50,8 +60,6 @@ class AlignedDataLoader(BaseDataLoader):
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
- if opt.isTrain and not opt.no_flip:
- transformations.insert(1, transforms.RandomHorizontalFlip())
transform = transforms.Compose(transformations)
# Dataset A
@@ -64,7 +72,10 @@ class AlignedDataLoader(BaseDataLoader):
num_workers=int(self.opt.nThreads))
self.dataset = dataset
- self.paired_data = PairedData(data_loader, opt.fineSize, opt.max_dataset_size)
+
+ flip = opt.isTrain and not opt.no_flip
+ self.paired_data = PairedData(data_loader, opt.fineSize,
+ opt.max_dataset_size, flip)
def name(self):
return 'AlignedDataLoader'