summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--README.md4
1 files changed, 2 insertions, 2 deletions
diff --git a/README.md b/README.md
index 2f3d136..d01b13b 100644
--- a/README.md
+++ b/README.md
@@ -87,7 +87,7 @@ bash ./datasets/download_pix2pix_dataset.sh facades
- Train a model:
```bash
#!./scripts/train_pix2pix.sh
-python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --which_model_netG unet_256 --which_direction BtoA --lambda_A 100 --dataset_mode aligned --use_dropout --no_lsgan --norm batch
+python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --which_model_netG unet_256 --which_direction BtoA --lambda_A 100 --dataset_mode aligned --no_lsgan --norm batch
```
- To view training results and loss plots, run `python -m visdom.server` and click the URL http://localhost:8097. To see more intermediate results, check out `./checkpoints/facades_pix2pix/web/index.html`
- Test the model (`bash ./scripts/test_pix2pix.sh`):
@@ -103,7 +103,7 @@ More example scripts can be found at `scripts` directory.
If you would like to apply a pre-trained model to a collection of input photos (without image pairs), please use `--dataset_mode single` and `--model test` options. Here is a script to apply a pix2pix model to facade label maps (stored in the directory `facades/testB`).
``` bash
#!./scripts/test_single.sh
-python test.py --dataroot ./datasets/facades/testB/ --name facades_pix2pix --model test --which_model_netG unet_256 --which_direction BtoA --dataset_mode single --use_dropout
+python test.py --dataroot ./datasets/facades/testB/ --name facades_pix2pix --model test --which_model_netG unet_256 --which_direction BtoA --dataset_mode single
```
## Training/test Details