{"id": "1c2802c2199b6d15ecefe7ba0c39bfe44363de38", "citations": [{"id": "e96a3d4df7f6956ba185107747c3d7c16d1ed845", "title": "Unite the People: Closing the Loop Between 3D and 2D Human Representations", "year": "2017", "pdf": ["https://arxiv.org/pdf/1701.02468.pdf"]}, {"id": "19c53302bda8a82ec40d314a85b1713f43058a1a", "title": "Deep learning models of biological visual information processing", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/19c5/3302bda8a82ec40d314a85b1713f43058a1a.pdf"]}, {"id": "022d74ae2f8680e780b18e0cbb041d5c5a57c7a5", "title": "Video Salient Object Detection via Fully Convolutional Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1702.00871.pdf"]}, {"id": "6ad107c08ac018bfc6ab31ec92c8a4b234f67d49", "title": "Supervision-by-Registration: An Unsupervised Approach to Improve the Precision of Facial Landmark Detectors", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.00966.pdf"]}, {"id": "4f58c42856f1c23f15833d86721adae76215a023", "title": "4D Model-Based Spatiotemporal Alignment of Scripted Taiji Quan Sequences", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w16/Scott_4D_Model-Based_Spatiotemporal_ICCV_2017_paper.pdf", "http://www.cse.psu.edu/~rtc12/Papers/iccv2017_peoplecap_06_final.pdf"]}, {"id": "5ade87a54c8baec555c37d59071c6fb4a9a55cf7", "title": "Deep Learning For Video Saliency Detection", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/5ade/87a54c8baec555c37d59071c6fb4a9a55cf7.pdf"]}, {"id": "c20b2ec72ebf798e9567a145465e37a755fc34d8", "title": "Fully Automatic Multi-person Human Motion Capture for VR Applications", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/c20b/2ec72ebf798e9567a145465e37a755fc34d8.pdf"]}, {"id": "b7ac537d97efcb968ca8e353ff5b0563e26b9dbe", "title": "Object-Aware Dense Semantic Correspondence", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Yang_Object-Aware_Dense_Semantic_CVPR_2017_paper.pdf"]}, {"id": "07d6238d8f8edbfe0fd2887fa0a7939735f21e13", "title": "Learning Human Optical Flow", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.05666.pdf"]}, {"id": "7d7ee56f28688283ab9958bcc94fe88413fd89b6", "title": "Personalized pose estimation for body language understanding", "year": "2017", "pdf": ["http://www.cs.rochester.edu/u/zyang39/icip17/Personalized_Pose_ICIP_2017.pdf", "http://www.cs.rochester.edu/u/zyang39/r4-personalized-pose.pdf"]}, {"id": "2bfe6128731674488249316cd2db83fe9045278d", "title": "Real-time Human Pose Estimation with Convolutional Neural Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2bfe/6128731674488249316cd2db83fe9045278d.pdf"]}]}