{"id": "32c801cb7fbeb742edfd94cccfca4934baec71da", "citations": [{"id": "427d6d9bc05b07c85fc6b2e52f12132f79a28f6c", "title": "Single-Image Crowd Counting via Multi-Column Convolutional Neural Network", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Single-Image_Crowd_Counting_CVPR_2016_paper.pdf", "http://sist.shanghaitech.edu.cn/office/research/news/CVPR2016/paper/Single-Image%20Crowd%20Counting%20via%20Multi-Column%20Convolutional%20Neural%20Network.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Single-Image_Crowd_Counting_CVPR_2016_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780439", "http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.70", "http://doi.org/10.1109/CVPR.2016.70"]}, {"id": "9185db7ba8375311879d506562a7c8e89f34ff82", "title": "Computer vision and machine learning for microscopy image analysis", "year": "2015", "pdf": [], "doi": ["https://ora.ox.ac.uk/objects/uuid:62a03c45-2616-49a4-8976-fb1ff481915f"]}, {"id": "1ba4d5d3b0cb46d61f23279f70ae42735601a60c", "title": "Crowd Counting via Weighted VLAD on a Dense Attribute Feature Map", "year": "2018", "pdf": ["https://arxiv.org/pdf/1604.08660.pdf"], "doi": []}, {"id": "02a4fabb41ce20d10e4055fff49ac98b86723000", "title": "Efficient People Counting with Limited Manual Interferences", "year": "2014", "pdf": ["https://opus.lib.uts.edu.au/bitstream/10453/37749/3/3.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7008106", "http://doi.org/10.1109/DICTA.2014.7008106"]}, {"id": "2ab8a7654f943c9d19e02eee0b2ce3b12d6bc3c1", "title": "Crowd Counting with Deep Negative Correlation Learning", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578662"]}, {"id": "18ddef5e311b62adf5d037a240324f569bbfd248", "title": "Input Frame Dense Map For Distant View Object Detection For Foreground Crowd counting Result", "year": "2018", "pdf": [], "doi": []}, {"id": "49a690f5dacf8b6cae7f2a1c4ef2052042d6c729", "title": "Active learning for high-density crowd count regression", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8078508", "http://doi.ieeecomputersociety.org/10.1109/AVSS.2017.8078508", "http://doi.org/10.1109/AVSS.2017.8078508"]}, {"id": "a3f67dbb0d72b236ff7c11b9d3611478d04b902e", "title": "Crowd Behavior Analysis: A Review where Physics meets Biology", "year": "2016", "pdf": ["https://arxiv.org/pdf/1511.06586.pdf"], "doi": []}, {"id": "8c4be5f5ff36bb326ae4325d2ed79a18a0296107", "title": "Crowd density estimation based on classification activation map and patch density level", "year": "2018", "pdf": [], "doi": ["https://doi.org/10.1007/s00521-018-3954-7"]}, {"id": "fb6745ecbe69aac73ff6353dbf781c588c55a7ff", "title": "Geometric and Physical Constraints for Head Plane Crowd Density Estimation in Videos.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.08805.pdf"], "doi": []}, {"id": "2060d46b178719080d51bccb150a3f8f227807ce", "title": "Human count estimation in high density crowd images and videos", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7913173"]}, {"id": "9bd3b15944ac28aa7021db126e4344a478bdabf4", "title": "Crowd-11: A Dataset for Fine Grained Crowd Behaviour Analysis", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w37/papers/Dupont_Crowd-11_A_Dataset_CVPR_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8015005", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.271", "http://doi.org/10.1109/CVPRW.2017.271"]}, {"id": "a65b93c01518755291e19a0545c1a3d20e401c0a", "title": "A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning", "year": "2016", "pdf": ["https://arxiv.org/pdf/1609.04453.pdf"], "doi": []}, {"id": "c298134646049f72b1a8732ec6594a34f6311660", "title": "Dual Path Multi-Scale Fusion Networks with Attention for Crowd Counting", "year": "2019", "pdf": ["https://arxiv.org/pdf/1902.01115.pdf"], "doi": []}, {"id": "d656078f3ce43ec5ec645ccfbd0af483c9669b10", "title": "Benchmark data and method for real-time people counting in cluttered scenes using depth sensors", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.04339.pdf"], "doi": []}, {"id": "9c889616034adce2af05d74eac44cf43a8106468", "title": "Binary Quadratic Programing for Online Tracking of Hundreds of People in Extremely Crowded Scenes", "year": "2018", "pdf": ["https://arxiv.org/pdf/1603.09240.pdf"], "doi": []}, {"id": "6ede463b08327c61eab9c1a2bb73204e188e850a", "title": "Visual Surveillance for Hajj and Umrah: A Review", "year": "2014", "pdf": ["http://www.iaescore.com/journals/index.php/IJAI/article/download/1392/pdf"], "doi": ["https://doi.org/10.11591/ij-ai.v3i2.1392"]}, {"id": "3bf66814817f582510e0f0a717112b78aca075a0", "title": "UNIVERSITY OF CALIFORNIA RIVERSIDE Bio-Image Analysis for Understanding Plant Development and Mosquito Behaviors A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/3bf6/6814817f582510e0f0a717112b78aca075a0.pdf"], "doi": []}, {"id": "5f0f8c9acc3e8eb50ca6e7d9c33cf3d9a8a54985", "title": "Structured Inhomogeneous Density Map Learning for Crowd Counting", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.06642.pdf"], "doi": []}, {"id": "1810a716546622d138f3715bd4d3a425ea58c8b7", "title": "Digital Scene Augmentation Techniques for Generating Photo-Realistic Virtual Crowds", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8516471"]}, {"id": "4119d0364fd2c5b869888025ea94e8b65a2d5faf", "title": "Physics Inspired Methods for Crowd Video Surveillance and Analysis: A Survey", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8517154"]}, {"id": "b9305c065b3c95fd0844d16a09fb9cc7c321cf58", "title": "Detecting Humans in Dense Crowds Using Locally-Consistent Scale Prior and Global Occlusion Reasoning", "year": "2015", "pdf": ["http://crcv.ucf.edu/papers/Idrees_CrowdHumanDetection_PAMI2015.pdf", "http://www.crcv.ucf.edu/papers/Idrees%20et%20al.%20-%20Detecting%20Humans%20in%20Dense%20Crowds%20-%20PAMI15.pdf", "http://www.cs.ucf.edu/~haroon/datafiles/Idrees_Detection_TPAMI_2015.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7018985", "http://doi.org/10.1109/TPAMI.2015.2396051", "https://www.ncbi.nlm.nih.gov/pubmed/26340254", "https://www.wikidata.org/entity/Q48653652"]}, {"id": "139f8dea90ed4b535aea4ae03211ca948fe34acd", "title": "People, Penguins and Petri Dishes: Adapting Object Counting Models to New Visual Domains and Object Types Without Forgetting", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578940"]}, {"id": "8861eb32367e6b227fafc21cee87f70189348c26", "title": "Efficient and Unbiased Estimation of Population Size", "year": "2015", "pdf": ["https://repositorio.unican.es/xmlui/bitstream/handle/10902/10250/EfficientAndUnbiased.pdf?isAllowed=y&sequence=3"], "doi": ["https://www.ncbi.nlm.nih.gov/pubmed/26535587", "http://journals.plos.org/plosone/article/file?id=info:doi/10.1371/journal.pone.0141868.s001&type=supplementary", "https://doi.org/10.1371/journal.pone.0141868"]}, {"id": "9fa796a11bbcc50fd20796701a123177cbd59ca5", "title": "Crowd Scene Analysis Using Deep Learning Network", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8550851"]}, {"id": "71b6057016b7da02e454fcc42f270ec040b488cd", "title": "A New Framework For Crowded Scene Counting Based On Weighted Sum Of Regressors and Human Classifier.", "year": "2018", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=3287980"]}, {"id": "c936b9a958a67cdd5665b923569d9d786c934029", "title": "Software Specification Document For", "year": "", "pdf": ["https://pdfs.semanticscholar.org/c936/b9a958a67cdd5665b923569d9d786c934029.pdf"], "doi": []}, {"id": "f32db58cbb8319eb8f2cfa2720c810f8410eb569", "title": "A software suite for large-scale video- and image-based analytics", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/f32d/b58cbb8319eb8f2cfa2720c810f8410eb569.pdf"], "doi": []}, {"id": "33d076ad8ecba15c61d5ee8c3e2623d23f73d396", "title": "Divide and Grow: Capturing Huge Diversity in Crowd Images with Incrementally Growing CNN", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578479"]}, {"id": "ba1072f692840c6e3c6c506f164b741c22a27a68", "title": "Online real-time crowd behavior detection in video sequences", "year": "2016", "pdf": [], "doi": ["http://doi.org/10.1016/j.cviu.2015.09.010"]}, {"id": "2faccc93b7bf66ec8764ed3293849bed1bdbf115", "title": "People counting based on head detection combining Adaboost and CNN in crowded surveillance environment", "year": "2016", "pdf": [], "doi": ["http://doi.org/10.1016/j.neucom.2016.01.097"]}, {"id": "2bf53442826052dcf1f3e8f2b231eaf164ddfe3c", "title": "Crowd density estimation in still images using multiple local features and boosting regression ensemble", "year": "2019", "pdf": [], "doi": ["https://doi.org/10.1007/s00521-019-04021-2"]}, {"id": "5101de7052206087dc256660d72cb05d0553b24c", "title": "Crowd Counting via Adversarial Cross-Scale Consistency Pursuit", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578648"]}, {"id": "216bf8374a6fd745e623750583bb2ffbae6e7edd", "title": "Fusing Crowd Density Maps and Visual Object Trackers for People Tracking in Crowd Scenes", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578659"]}, {"id": "0c3d1f306fed393b92fe62f03496c0405ed1ab4d", "title": "Rich Convolutional Features Fusion for Crowd Counting", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373856", "http://doi.ieeecomputersociety.org/10.1109/FG.2018.00063", "http://doi.org/10.1109/FG.2018.00063"]}, {"id": "5bb6270ac7932deafbd42d884b58b93a10d22dcf", "title": "The crowd congestion level \u2014 A new measure for risk assessment in video-based crowd monitoring", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7906034"]}, {"id": "e2ee3eb6ed0cb3278cde72f67ec709af33b55e84", "title": "Crowd flux analysis and abnormal event detection in unstructured and structured scenes", "year": "2013", "pdf": [], "doi": ["https://doi.org/10.1007/s11042-013-1593-7"]}, {"id": "2dafb6152438431c968257234d08328cba8f63f6", "title": "Flow Segmentation in Dense Crowds", "year": "2015", "pdf": ["https://arxiv.org/pdf/1506.04608.pdf"], "doi": []}, {"id": "ca3ff5775a5e63249850ea3b20585b1faa857c72", "title": "Motion sketch based crowd video retrieval", "year": "2017", "pdf": [], "doi": ["https://doi.org/10.1007/s11042-017-4568-2"]}, {"id": "2de7ec14e49ccd5ccd14f03df4c70be4ddf0c727", "title": "Tracking People in Dense Crowds Using Supervoxels", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7907517"]}, {"id": "cfd97507f1a7dd2923e2eabe182f350f42c739cb", "title": "Real-time abnormal situation detection based on particle advection in crowded scenes", "year": "2014", "pdf": [], "doi": ["https://doi.org/10.1007/s11554-014-0424-z"]}, {"id": "df8d3c10caf8d3ccce0cf31ec5238d93d4691b83", "title": "Motion detection using optical flow and standard deviation", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7877597"]}, {"id": "2c0b355b8c25b3129bc3a41761e37200c8e5e055", "title": "Measuring Flow Complexity in Videos", "year": "2013", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751246"]}, {"id": "dc61f5a22fde0b3163ef64aa452518225d47c6e3", "title": "Temporal Unknown Incremental Clustering Model for Analysis of Traffic Surveillance Videos", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8384026"]}, {"id": "1116e7ce6565b3c2f3bdae80b11bec166353a7cd", "title": "A Congestion Detection System Using Optical Flow and Standard Deviation in Mass Gathering", "year": "2016", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=2979812"]}, {"id": "0731b7ae6e4caff1c2b714530f563e1c2276cfe2", "title": "Dense crowd counting from still images with convolutional neural networks", "year": "2016", "pdf": [], "doi": ["https://doi.org/10.1016/j.jvcir.2016.03.021"]}, {"id": "9adcf858bda2991627951b68b75c99fc1ebd0f76", "title": "Switching Convolutional Neural Network for Crowd Counting", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099912"]}, {"id": "5302596bc8c84584a3531f2048bd7bf8e9507042", "title": "Spatiotemporal Modeling for Crowd Counting in Videos", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237813"]}, {"id": "715a62ab4c262431da7d4549c1689f96c299589c", "title": "Dual Path Multi-Scale Fusion Networks with Attention for Crowd Counting", "year": "2019", "pdf": ["https://arxiv.org/pdf/1902.01115.pdf"], "doi": []}, {"id": "6d5588d88193a4718db2377a8dd3679e35ecd1c1", "title": "Scale Pyramid Network for Crowd Counting", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8658887"]}, {"id": "6dfe0d8f04b54fb2efe2b513b7a1de8c96a250bc", "title": "Effective use of convolutional neural networks and diverse deep supervision for better crowd counting", "year": "2018", "pdf": [], "doi": ["https://doi.org/10.1007/s10489-018-1394-9"]}, {"id": "3ed135299650d53a5487f4fdd789f9d5b0930c13", "title": "Top-Down Feedback for Crowd Counting Convolutional Neural Network", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08881.pdf"], "doi": []}, {"id": "cbe82ab4774cff0e5714103526f479e5c6f23e7e", "title": "Crowd Counting Using Scale-Aware Attention Networks", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8659316"]}]}