{"id": "18858cc936947fc96b5c06bbe3c6c2faa5614540", "citations": [{"id": "4071778aef122d2ba9f2525a56e375e072a4b186", "title": "Questioning the assumptions behind fairness solutions", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.11293.pdf"], "doi": []}, {"id": "3cbdb3c9eb3e97a9d12d84d2b62b76884cc0003d", "title": "State of the Art in Fair ML: From Moral Philosophy and Legislation to Fair Classifiers", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.09539.pdf"], "doi": []}, {"id": "f8e0910d50d7dffe7097b6263c6bb3952b1de336", "title": "50 Years of Test (Un)fairness: Lessons for Machine Learning", "year": "2019", "pdf": ["https://arxiv.org/pdf/1811.10104.pdf"], "doi": []}, {"id": "9b0f2fb0faa27c4fd9d50e84c65ecd81ab26bd75", "title": "POTs: Protective Optimization Technologies", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.02711.pdf"], "doi": []}, {"id": "8285e1b5536ce11d55462ae757f61c75ec6773c6", "title": "The Frontiers of Fairness in Machine Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.08810.pdf"], "doi": []}, {"id": "916c816f16e4934e41f09a3ff81a10e5fc4bb459", "title": "Multicalibration: Calibration for the (Computationally-Identifiable) Masses", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/916c/816f16e4934e41f09a3ff81a10e5fc4bb459.pdf"], "doi": []}, {"id": "69985d404c2befe175c0ee953d0fee4f843164bf", "title": "Noise-tolerant fair classification", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.10837.pdf"], "doi": []}, {"id": "06178edf24183e6fb9e3e265ff4f290a4f0934d2", "title": "A Cautionary Tail", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/0617/8edf24183e6fb9e3e265ff4f290a4f0934d2.pdf"], "doi": []}, {"id": "82ffd9024dd6890e5469b587e3516cd07786d6d4", "title": "Using Image Fairness Representations in Diversity-Based Re-ranking for Recommendations", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.03577.pdf"], "doi": []}, {"id": "27dafaa0478bc70e3af9c5a45f278bcee44a920c", "title": "Learnability and semantic universals", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/27da/faa0478bc70e3af9c5a45f278bcee44a920c.pdf"], "doi": []}, {"id": "aec3e1a8a21cf13021c388590bd25cf79325839a", "title": "Automated Classification of Skin Lesions: From Pixels to Practice.", "year": "2018", "pdf": [], "doi": ["https://www.ncbi.nlm.nih.gov/pubmed/30244720", "http://doi.org/10.1016/j.jid.2018.06.175"]}, {"id": "1a618ff6fd0f0f94ab070555a4746e120eb9fbab", "title": "Why Is My Classifier Discriminatory?", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.12002.pdf"], "doi": []}, {"id": "48bc87ccc6b6e2d318f91d5f1886432806fec553", "title": "Multiaccuracy: Black-Box Post-Processing for Fairness in Classification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.12317.pdf"], "doi": []}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": [], "doi": []}, {"id": "d2384ce437e4e6ec82aaade981cda79db13b4dc3", "title": "Removing Algorithmic Discrimination (With Minimal Individual Error)", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.02510.pdf"], "doi": []}, {"id": "390dc36d547dbf9bc9774ec8de454e6317a2d170", "title": "InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.00193.pdf"], "doi": []}, {"id": "5d4af8c9321168f9ba7a501f33fb019fa2deaa22", "title": "Examining Gender and Race Bias in Two Hundred Sentiment Analysis Systems", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.04508.pdf"], "doi": []}, {"id": "e7263a21c0bf2c146e1b8a13b8ad518286a55159", "title": "Model Cards for Model Reporting", "year": "2019", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=3287596"]}, {"id": "0df347f5e3118fac7c351917e3a497899b071d1e", "title": "Datasheets for Datasets", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.09010.pdf"], "doi": []}, {"id": "4c987baaf0587798a40b56d4fdc9e2518bdc139b", "title": "TuringBox: An Experimental Platform for the Evaluation of AI Systems", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/69c2/e1938b4cc5144cc47babcdce3df66b5fba32.pdf"], "doi": []}, {"id": "15eff32ccbf0f89e888df5a5128d89cea3e0060e", "title": "On preserving non-discrimination when combining expert advice", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.11829.pdf"], "doi": []}, {"id": "61c425bdda0e053074e96c3e6761ff1d7e0dd469", "title": "A Framework for Understanding Unintended Consequences of Machine Learning", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.10002.pdf"], "doi": []}, {"id": "6dead19a89cbcbb71350a19925cb2c6f71261dfc", "title": "Fair k-Center Clustering for Data Summarization", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.08628.pdf"], "doi": []}, {"id": "8fc60a7489b76641ceee5da9180a3ca76b18560d", "title": "AI Fairness for People with Disabilities: Point of View", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.10670.pdf"], "doi": []}, {"id": "7373afec3b5f87f9f0dfe9aed0e0be9a38a9e1c7", "title": "Machine Learning, Health Disparities, and Causal Reasoning.", "year": "2018", "pdf": [], "doi": ["https://www.ncbi.nlm.nih.gov/pubmed/30508423", "https://doi.org/10.7326/M18-3297"]}, {"id": "6812ee7c4173abb9e0a22904adff04c54d847587", "title": "Engaging with Health Data: The Interplay Between Self-Tracking Activities and Emotions in Fertility Struggles", "year": "2018", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=3274309"]}, {"id": "68a05a845b6ace756d51c5bbce927479c9b9ab95", "title": "A Moral Framework for Understanding of Fair ML through Economic Models of Equality of Opportunity", "year": "2019", "pdf": ["https://arxiv.org/pdf/1809.03400.pdf"], "doi": []}, {"id": "66436e96aafa7abd3b0700e8409dbb360775a9b8", "title": "Considering Race a Problem of Transfer Learning", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8638327"]}]}