{"id": "177bc509dd0c7b8d388bb47403f28d6228c14b5c", "citations": [{"id": "f6b4811c5e7111485e2c9cc5bf63f8ac80f3e2d7", "title": "Face Verification via Class Sparsity Based Supervised Encoding", "year": "2017", "pdf": []}, {"id": "9ecddc8c91c2263607aae9dba7d3bc05e75cc219", "title": "RIPA: Real-Time Image Privacy Alert System", "year": "2018", "pdf": []}, {"id": "62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4", "title": "Noise-resistant network: a deep-learning method for face recognition under noise", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/62d1/a31b8acd2141d3a994f2d2ec7a3baf0e6dc4.pdf"]}, {"id": "b099df0a0c5abeff5586a1389e9278613e6c0c64", "title": "Flame detection using deep learning", "year": "2018", "pdf": []}, {"id": "de623c6bdd097990077fc221f841221890e9bdd5", "title": "Collaborative representation of deep sparse filtered features for robust verification of smartphone periocular images", "year": "2016", "pdf": []}, {"id": "3d6f59e0f0e16d01b9c588a53d3b6b3b984e991e", "title": "Learning Local Responses of Facial Landmarks with Conditional Variational Auto-Encoder for Face Alignment", "year": "2017", "pdf": []}, {"id": "ed82f10e5bfe1825b9fa5379a1d0017b96fa1ebf", "title": "A Face-Recognition Approach Using Deep Reinforcement Learning Approach for User Authentication", "year": "2017", "pdf": []}, {"id": "42e898ca773dbd9e085ffa824c21d0bfda245345", "title": "LOTS about attacking deep features", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.06179.pdf"]}, {"id": "fa641327dc5873276f0af453a2caa1634c16f143", "title": "ChaLearn Looking at People RGB-D Isolated and Continuous Datasets for Gesture Recognition", "year": "2016", "pdf": ["http://sergioescalera.com/wp-content/uploads/2016/05/gesture_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Wan_ChaLearn_Looking_at_CVPR_2016_paper.pdf"]}, {"id": "a13a27e65c88b6cb4a414fd4f6bca780751a59db", "title": "Deep convolution neural network with stacks of multi-scale convolutional layer block using triplet of faces for face recognition in the wild", "year": "2016", "pdf": []}, {"id": "e908ce44fa94bb7ecf2a8b70cb5ec0b1a00b311a", "title": "Topology preserving graph matching for partial face recognition", "year": "2017", "pdf": []}, {"id": "56a653fea5c2a7e45246613049fb16b1d204fc96", "title": "Quaternion Collaborative and Sparse Representation With Application to Color Face Recognition", "year": "2016", "pdf": ["http://ieeeprojectsmadurai.com/matlab2016base/Quaternion%20Collaborative%20and%20Sparse%20Representation.pdf"]}, {"id": "05469df372a567dcef62b7ba447685fd5a5efb80", "title": "DeepSpace: An Online Deep Learning Framework for Mobile Big Data to Understand Human Mobility Patterns", "year": "2016", "pdf": ["https://arxiv.org/pdf/1610.07009.pdf"]}, {"id": "7ce9e79cb63e33faa3be0c534664076e420dd7a1", "title": "Semantic Segmentation of Complex Road Environments from Aerial Images Using Convolutional Neural Networks", "year": "2018", "pdf": []}, {"id": "8de1c724a42d204c0050fe4c4b4e81a675d7f57c", "title": "Deep Face Recognition: A Survey", "year": "2018", "pdf": ["https://talhassner.github.io/home/projects/DeepFaceSurvey/Masietal2018deepfacesurvey.pdf"]}, {"id": "4e19917a786c611ffdecd171fae37183ad55ad49", "title": "A survey of practical adversarial example attacks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4e19/917a786c611ffdecd171fae37183ad55ad49.pdf"]}, {"id": "6bb95a0f3668cd36407c85899b71c9fe44bf9573", "title": "Face attribute prediction using off-the-shelf CNN features", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.03935.pdf"]}, {"id": "7323b594d3a8508f809e276aa2d224c4e7ec5a80", "title": "An Experimental Evaluation of Covariates Effects on Unconstrained Face Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.05508.pdf"]}, {"id": "05ffc37ed1289c9dbd01f1cd96d5a5ae908b12cb", "title": "Multi-source Deep Learning for Human Pose Estimation", "year": "2014", "pdf": ["http://visionmeetscognition.org/fpic2014/Camera_Ready/Paper%2010.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ouyang_Multi-source_Deep_Learning_2014_CVPR_paper.pdf", "http://www.ee.cuhk.edu.hk/~xgwang/papers/ouyangCWcvpr14.pdf"]}, {"id": "5588b6b8dc57e8cd63528087b103d6dc00a86d98", "title": "Recognizing driver inattention by convolutional neural networks", "year": "2015", "pdf": []}, {"id": "d94d7ff6f46ad5cab5c20e6ac14c1de333711a0c", "title": "Face Album: Towards automatic photo management based on person identity on mobile phones", "year": "2017", "pdf": ["http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0003031.pdf"]}, {"id": "7d40e7e5c01bd551edf65902386401e1b8b8014b", "title": "Channel-Level Acceleration of Deep Face Representations", "year": "2015", "pdf": ["http://www.cs.tau.ac.il/~wolf/papers/RRR_cameraready.pdf"]}, {"id": "a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d", "title": "High Performance Large Scale Face Recognition with Multi-cognition Softmax and Feature Retrieval", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Xu_High_Performance_Large_ICCV_2017_paper.pdf"]}, {"id": "06bd34951305d9f36eb29cf4532b25272da0e677", "title": "A Fast and Accurate System for Face Detection, Identification, and Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07586.pdf"]}, {"id": "0252256fa23eceb54d9eea50c9fb5c775338d9ea", "title": "Application-driven Advances in Multi-biometric Fusion", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/0252/256fa23eceb54d9eea50c9fb5c775338d9ea.pdf"]}, {"id": "3d94f81cf4c3a7307e1a976dc6cb7bf38068a381", "title": "Data-Dependent Label Distribution Learning for Age Estimation", "year": "2017", "pdf": ["http://faculty.ucmerced.edu/mhyang/papers/tip17_age.pdf"]}, {"id": "5ec94adc9e0f282597f943ea9f4502a2a34ecfc2", "title": "Leveraging the Power of Gabor Phase for Face Identification: A Block Matching Approach", "year": "2015", "pdf": ["https://arxiv.org/pdf/1506.04655.pdf"]}, {"id": "77d31d2ec25df44781d999d6ff980183093fb3de", "title": "The Multiverse Loss for Robust Transfer Learning", "year": "2016", "pdf": ["https://arxiv.org/pdf/1511.09033.pdf"]}, {"id": "73d23c0e81c39b25cc43521a8f2697912d6cff94", "title": "Detecting Adversarial Examples in Deep Networks with Adaptive Noise Reduction", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.08378.pdf"]}, {"id": "60e2b9b2e0db3089237d0208f57b22a3aac932c1", "title": "Frankenstein: Learning Deep Face Representations Using Small Data", "year": "2017", "pdf": ["https://arxiv.org/pdf/1603.06470.pdf"]}, {"id": "0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e", "title": "Large age-gap face verification by feature injection in deep networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1602.06149.pdf"]}, {"id": "74ed90588ff5b2aa65c1b0882f1aa50caf5c2127", "title": "A multimodal deep learning framework using local feature representations for face recognition", "year": "2017", "pdf": ["https://bradscholars.brad.ac.uk/bitstream/handle/10454/13122/al-waisy_et_al_2017.pdf?isAllowed=y&sequence=5"]}, {"id": "fbd50cb8b107a998fb1c2de0757318b3f2e89b02", "title": "Deep Learning Based Improved Classification System for Designing Tomato Harvesting Robot", "year": "2018", "pdf": []}, {"id": "731d33256d42dc4146019954c46c566aa666d7f2", "title": "Partially Shared Multi-task Convolutional Neural Network with Local Constraint for Face Attribute Learning", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_Partially_Shared_Multi-Task_CVPR_2018_paper.pdf"]}, {"id": "8da32ff9e3759dc236878ac240728b344555e4e9", "title": "Investigating Nuisance Factors in Face Recognition with DCNN Representation", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Ferrari_Investigating_Nuisance_Factors_CVPR_2017_paper.pdf"]}, {"id": "489decd84645b77d31001d17a66abb92bb96c731", "title": "Learning View-Specific Deep Networks for Person Re-Identification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.11333.pdf"]}, {"id": "7ef0cc4f3f7566f96f168123bac1e07053a939b2", "title": "Triangular Similarity Metric Learning: a Siamese Architecture Approach. ( L'apprentissage de similarit\u00e9 triangulaire en utilisant des r\u00e9seaux siamois)", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/e735/b8212d8a81909753291d5d06789a917014f8.pdf"]}, {"id": "d2d9612d3d67582d0cd7c1833599b88d84288fab", "title": "A comparison of deep multilayer networks and Markov random field matching models for face recognition in the wild", "year": "2016", "pdf": []}, {"id": "0a23bdc55fb0d04acdac4d3ea0a9994623133562", "title": "Large-scale Bisample Learning on ID vs. Spot Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03018.pdf"]}, {"id": "0a84cb949a12c619c6558f1a267710e9a7b71726", "title": "A multi-biometric iris recognition system based on a deep learning approach", "year": "2017", "pdf": []}, {"id": "166186e551b75c9b5adcc9218f0727b73f5de899", "title": "Automatic Age and Gender Recognition in Human Face Image Dataset using Convolutional Neural Network System", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/1661/86e551b75c9b5adcc9218f0727b73f5de899.pdf"]}, {"id": "973022a1f9e30a624f5e8f7158b5bbb114f4af32", "title": "Searching a specific person in a specific location using deep features", "year": "2016", "pdf": []}, {"id": "a6d47f7aa361ab9b37c7f3f868280318f355fadc", "title": "Features and methods for improving large scale face recognition", "year": "2015", "pdf": []}, {"id": "6baaa8b763cc5553715766e7fbe7abb235fae33c", "title": "Facial Attributes Classification Using Multi-task Representation Learning", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Ehrlich_Facial_Attributes_Classification_CVPR_2016_paper.pdf"]}, {"id": "3555bdf6acee09ec7eb08b891a0f30b82c1b6482", "title": "Soft-Margin Learning for Multiple Feature-Kernel Combinations with Domain Adaptation, for Recognition in Surveillance Face Datasets", "year": "2016", "pdf": ["http://vislab.ucr.edu/Biometrics16/Soft-Margin_Learning.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w4/papers/Banerjee_Soft-Margin_Learning_for_CVPR_2016_paper.pdf", "https://arxiv.org/pdf/1610.01374v1.pdf"]}, {"id": "12948518bb457d0d302bbf00160f4165ce089b9b", "title": "Adversarial Spatio-Temporal Learning for Video Deblurring", "year": "2019", "pdf": ["https://arxiv.org/pdf/1804.00533.pdf"]}, {"id": "806c07757431ab3fd91f4276d350186cf6f9b7e4", "title": "Copula Ordinal Regression Framework for Joint Estimation of Facial Action Unit Intensity", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/1892/5ac92f9c8f6e82e0cc7a843234c6c494c4cc.pdf"]}, {"id": "89f091ccbf2a428c5cee5339c4dadb310d6dab03", "title": "Farmland Scene Classification Based on Convolutional Neural Network", "year": "2016", "pdf": []}, {"id": "d0441970a9f19751e6c047b364f580c30bf9754a", "title": "Pose-Aware Person Recognition", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.10120.pdf"]}, {"id": "0166abc36d196b9c434a30fc5cdaf82c429ef852", "title": "IRMD: Malware Variant Detection Using Opcode Image Recognition", "year": "2016", "pdf": []}, {"id": "a2c08d63682b348a9848a77f9b97378a37a6b447", "title": "Curriculum Adversarial Training", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.04807.pdf"]}, {"id": "d03265ea9200a993af857b473c6bf12a095ca178", "title": "Multiple deep convolutional neural networks averaging for face alignment", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/d032/65ea9200a993af857b473c6bf12a095ca178.pdf"]}, {"id": "fef7fb6f3e239c346cd144960e27875889fdd650", "title": "One-Shot Metric Learning for Person Re-identification", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Bak_One-Shot_Metric_Learning_CVPR_2017_paper.pdf", "https://s3-us-west-1.amazonaws.com/disneyresearch/wp-content/uploads/20170713092653/One-Shot-Metric-Learning-for-Person-Re-identification-Paper.pdf"]}, {"id": "53840c83f7b6ae78d4310c5b84ab3fde1a33bc4f", "title": "Accelerated Training for Massive Classification via Dynamic Class Selection", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.01687.pdf"]}, {"id": "ae5983048e59a339c77fee89e9279a4a787ba985", "title": "Part-Based Deep Hashing for Large-Scale Person Re-Identification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.02145.pdf"]}, {"id": "7dde459312522985c85c03f6b2dd16c9da5ccf74", "title": "A multimodal biometrie system for personal identification based on deep learning approaches", "year": "2017", "pdf": []}, {"id": "519a31e8430c953b5c9767b5537c765ec1a26491", "title": "Occlusion Boundary Detection via Deep Exploration of Context", "year": "2016", "pdf": ["http://files.is.tue.mpg.de/black/papers/FuCVPR2016.pdf", "http://openaccess.thecvf.com/content_cvpr_2016/papers/Fu_Occlusion_Boundary_Detection_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Fu_Occlusion_Boundary_Detection_CVPR_2016_paper.pdf", "https://hal-upec-upem.archives-ouvertes.fr/hal-01578439/file/OcclusionBoundaryDetectionDeepExplorationContext_CVPR2016.pdf"]}, {"id": "6412d8bbcc01f595a2982d6141e4b93e7e982d0f", "title": "Deep Convolutional Neural Network Using Triplets of Faces, Deep Ensemble, and Score-Level Fusion for Face Recognition", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Kang_Deep_Convolutional_Neural_CVPR_2017_paper.pdf", "http://www.vislab.ucr.edu/Biometrics2017/program_slides/PaperID56_CVPRW_BNKANG_Oral.pdf", "http://www.vislab.ucr.edu/Biometrics2017/program_slides/PaperID56_CVPRW_BNKANG_Poster.pdf"]}, {"id": "7171b46d233810df57eaba44ccd8eabd0ad1f53a", "title": "Joint Face Representation Adaptation and Clustering in Videos", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/673c/07c9a6ecdc502083a9d45dc567c2de5038f4.pdf"]}, {"id": "a34d75da87525d1192bda240b7675349ee85c123", "title": "Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?", "year": "2015", "pdf": ["https://arxiv.org/pdf/1501.04690.pdf"]}, {"id": "d6e785d3466eeaaae1f6c792f679d1111ab30302", "title": "People tracking and re-identification by face recognition for RGB-D camera networks", "year": "2017", "pdf": []}, {"id": "5c54e0f46330787c4fac48aecced9a8f8e37658a", "title": "Simple Triplet Loss Based on Intra/Inter-Class Metric Learning for Face Verification", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Ming_Simple_Triplet_Loss_ICCV_2017_paper.pdf"]}, {"id": "e4f032ee301d4a4b3d598e6fa6cffbcdb9cdfdd1", "title": "Facial Landmark Point Localization using Coarse-to-Fine Deep Recurrent Neural Network", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.01760.pdf"]}, {"id": "f20e0eefd007bc310d2a753ba526d33a8aba812c", "title": "Accurate and robust face recognition from RGB-D images with a deep learning approach", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/116e/c3a1a8225362a3e3e445df45036fae7cadc6.pdf"]}, {"id": "e1a977d97cc108afc9d6811d9bdcff3e8f39846c", "title": "High-Resolution SAR Image Classification via Deep Convolutional Autoencoders", "year": "2015", "pdf": []}, {"id": "58cb6677b77d5a79fc5b8058829693ca30b36ac5", "title": "Under Review as a Conference Paper at Iclr 2016 Learning Metrics by Learning Constrained Em- Beddings of Objects to R N", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/58cb/6677b77d5a79fc5b8058829693ca30b36ac5.pdf"]}, {"id": "1a6d748365dbf3b17f2db371a30469478ee7b142", "title": "DeepID-Net: Object Detection with Deformable Part Based Convolutional Neural Networks", "year": "2017", "pdf": ["http://www.ee.cuhk.edu.hk/~xgwang/papers/ouyangZWpami16.pdf"]}, {"id": "d360968cbcca774bf0b70bb0f3fc870aea121924", "title": "Deep Neural Ranking for Crowdsourced Geopolitical Event Forecasting", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.09620.pdf"]}, {"id": "67484723e0c2cbeb936b2e863710385bdc7d5368", "title": "Anchor Cascade for Efficient Face Detection", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.03363.pdf"]}, {"id": "e278218ba1ff1b85d06680e99b08e817d0962dab", "title": "Tracking Persons-of-Interest via Unsupervised Representation Adaptation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.02139.pdf"]}, {"id": "48499deeaa1e31ac22c901d115b8b9867f89f952", "title": "Interim Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4849/9deeaa1e31ac22c901d115b8b9867f89f952.pdf"]}, {"id": "7f44973b8cb78be47d55d335f40a54aa00ef814c", "title": "Text-Independent Writer Identification via CNN Features and Joint Bayesian", "year": "2016", "pdf": []}, {"id": "831fbef657cc5e1bbf298ce6aad6b62f00a5b5d9", "title": "Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.05526.pdf"]}, {"id": "0ad4a814b30e096ad0e027e458981f812c835aa0", "title": "Leveraging mid-level deep representations for predicting face attributes in the wild", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.01827.pdf"]}, {"id": "5f40693c44b56fca1b94dfd3bc97b6d7be1b61d5", "title": "An intruder detection algorithm for vision based sense and avoid system", "year": "2016", "pdf": []}, {"id": "f294278e03868257bfce132b8cf189359ada915a", "title": "Boosting Face in Video Recognition via CNN Based Key Frame Extraction", "year": "2018", "pdf": ["https://www.clarkson.edu/sites/default/files/2018-03/Boosting%20Face%20in%20Video%20Recognition%20via%20CNN%20based%20Key%20Frame%20Extraction.pdf"]}, {"id": "bd8b25a4f16a46f81e6a07cf305650f17dbb5020", "title": "FOR MUSIC AUTO-TAGGING USING RAW WAVEFORMS", "year": "2017", "pdf": []}, {"id": "dfecaedeaf618041a5498cd3f0942c15302e75c3", "title": "A recursive framework for expression recognition: from web images to deep models to game dataset", "year": "2017", "pdf": ["https://arxiv.org/pdf/1608.01647.pdf"]}, {"id": "4e83b9cfd19b7963e2044916821d7a09bbd1574d", "title": "LINGYU ZHU TEACHING DEVELOPMENT PROJECT: GENE EXPRESSION PREDICTION WITH DEEP LEARNING", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/4e83/b9cfd19b7963e2044916821d7a09bbd1574d.pdf"]}, {"id": "39075ff687908133c2f0fa9a578db421b4f3805a", "title": "A multi \u2010 biometric iris recognition system based on a deep learning approach", "year": "2017", "pdf": []}, {"id": "fec295c6b6a1795d8ccb4592603040794667dfa7", "title": "LDOP: Local Directional Order Pattern for Robust Face Retrieval", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.07441.pdf"]}, {"id": "276282d6e7b617833f8b96c3fba65856ccbeae73", "title": "Automatic Mobile Application Traffic Identification by Convolutional Neural Networks", "year": "2016", "pdf": []}, {"id": "2c92839418a64728438c351a42f6dc5ad0c6e686", "title": "Pose-Aware Face Recognition in the Wild", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Masi_Pose-Aware_Face_Recognition_CVPR_2016_paper.pdf"]}, {"id": "23fd82c04852b74d655015ff0876e6c5defc6e61", "title": "Deep-based Ingredient Recognition for Cooking Recipe Retrieval", "year": "2016", "pdf": []}, {"id": "07d3dddb363870cfd980ca8d748c8b1418aad863", "title": "Learning from Differentially Private Neural Activations with Edge Computing", "year": "2018", "pdf": []}, {"id": "7b0b0e556a91057ce38a731de247e6a98ee65a2d", "title": "A Deep Learning Models for Blind Guidance by Integrating CNN and ELM", "year": "2018", "pdf": []}, {"id": "4dfd96f456f18bf678158d158f33929c63b438b8", "title": "Scarce face recognition via two-layer collaborative representation", "year": "2018", "pdf": []}, {"id": "5209758096819efee15751c8875121bd27f2ee78", "title": "Finding Person Relations in Image Data of the Internet Archive", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08246.pdf"]}, {"id": "9d104ac719107af754a52fe7b8c8085a64cd2618", "title": "Learning pairwise SVM on deep features for ear recognition", "year": "2017", "pdf": ["https://www.computer.org/csdl/proceedings/icis/2017/5507/00/07960016.pdf"]}, {"id": "388b345e4d9e306e7072d0d2604fcc385d32acf4", "title": "Dynamic Feature Learning for Partial Face Recognition", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018/papers/He_Dynamic_Feature_Learning_CVPR_2018_paper.pdf"]}, {"id": "49a7949fabcdf01bbae1c2eb38946ee99f491857", "title": "A concatenating framework of shortcut convolutional neural networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.00974.pdf"]}, {"id": "ac26166857e55fd5c64ae7194a169ff4e473eb8b", "title": "Personalized Age Progression with Bi-Level Aging Dictionary Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.01039.pdf"]}, {"id": "b465e173b81337dde5a0800753e34a40e4352d38", "title": "Pose-and-illumination-invariant face representation via a triplet-loss trained deep reconstruction model", "year": "2017", "pdf": []}, {"id": "b0a0a793e9bfe31d4d8bbf926369488bf0a97bc2", "title": "DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations", "year": "2016", "pdf": ["https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-016-1334-9"]}, {"id": "12002e37fd9cf69a68c3c216c9ee78fcfac2fab5", "title": "Vision-based human action recognition using machine learning techniques", "year": "2017", "pdf": ["http://eprints.lancs.ac.uk/89205/1/2017AllahBuxPhD.pdf"]}, {"id": "1da8178bfca7c76cae53ec34364d86c7d5713fdd", "title": "Pairwise Relational Networks using Local Appearance Features for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.06405.pdf"]}, {"id": "0b82bf595e76898993ed4f4b2883c42720c0f277", "title": "Improving Face Recognition by Exploring Local Features with Visual Attention", "year": "2018", "pdf": ["http://biometrics.cse.msu.edu/Publications/Fingerprint/Shietal_ImprovingFaceRecognitionByExploringLocalRegionsWithVisuaAttention_ICB2018.pdf"]}, {"id": "d066575b48b552a38e63095bb1f7b56cbb1fbea4", "title": "The performance of corrected learning network for object recognition", "year": "2017", "pdf": []}, {"id": "1bc214c39536c940b12c3a2a6b78cafcbfddb59a", "title": "Leveraging Gabor Phase for Face Identification in Controlled Scenarios", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/5cec/4dda1ba90aa61d54e4c5b61961915ffaf08c.pdf"]}, {"id": "00a38ebce124879738b04ffc1536018e75399193", "title": "Convolutional neural network for age classification from smart-phone based ocular images", "year": "2017", "pdf": []}, {"id": "4209783b0cab1f22341f0600eed4512155b1dee6", "title": "Accurate and Efficient Similarity Search for Large Scale Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00365.pdf"]}, {"id": "1174b869c325222c3446d616975842e8d2989cf2", "title": "CosFace: Large Margin Cosine Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.09414.pdf"]}, {"id": "173657da03e3249f4e47457d360ab83b3cefbe63", "title": "HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf"]}, {"id": "daa96d16117775de67cc1cf2f1d57922126e1a6d", "title": "From Eyes to Face Synthesis: a New Approach for Human-Centered Smart Surveillance", "year": "2018", "pdf": []}, {"id": "ee8d2256ac99799677a5bd88bb1a12973bd245df", "title": "Depth Pooling Based Large-Scale 3-D Action Recognition With Convolutional Neural Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.01194.pdf"]}, {"id": "43e63603a5794c4e289d1f41d7079ed9620a355e", "title": "Invisible Mask: Practical Attacks on Face Recognition with Infrared", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04683.pdf"]}, {"id": "a0fd85b3400c7b3e11122f44dc5870ae2de9009a", "title": "Learning Deep Representation for Face Alignment with Auxiliary Attributes", "year": "2016", "pdf": ["https://arxiv.org/pdf/1408.3967.pdf"]}, {"id": "af11769a427eb8daa8435b1ea3252531b4275db8", "title": "A Hybrid Approach for Face Alignment 1", "year": "2017", "pdf": []}, {"id": "263da1c074ad3527edf82bba0222f74c6f173973", "title": "Eyeglasses detection, location and frame discriminant based on edge information projection", "year": "2017", "pdf": []}, {"id": "084a05504ca15cba604b1e770913294c72ced2cb", "title": "GraphConnect: A Regularization Framework for Neural Networks", "year": "2015", "pdf": ["https://arxiv.org/pdf/1512.06757.pdf"]}, {"id": "5951e9e13ff99f97f301a336f24a14d80459c659", "title": "Joint Bayesian guided metric learning for end-to-end face verification", "year": "2018", "pdf": []}, {"id": "6c5ce8bf382948bb27a9cc33b700a2402877bb64", "title": "Hyperspectral image classification via contextual deep learning", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/6c5c/e8bf382948bb27a9cc33b700a2402877bb64.pdf"]}, {"id": "4926af10d590686f4f5706b450515caaa1ddea54", "title": "Adaptive Deep Supervised Autoencoder Based Image Reconstruction for Face Recognition", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/4926/af10d590686f4f5706b450515caaa1ddea54.pdf"]}, {"id": "9ea37d031a8f112292c0d0f8d731b837462714e9", "title": "Face Recognition: From Traditional to Deep Learning Methods", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00116.pdf"]}, {"id": "10384cbe0ed2c44c4d0059745d8bf1509be75941", "title": "iQIYI-VID: A Large Dataset for Multi-modal Person Identification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.07548.pdf"]}, {"id": "744d23991a2c48d146781405e299e9b3cc14b731", "title": "Aging Face Recognition: A Hierarchical Learning Model Based on Local Patterns Selection", "year": "2016", "pdf": ["http://www.cise.ufl.edu/~dihong/assets/LPS2016.pdf"]}, {"id": "4874daed0f6a42d03011ed86e5ab46f231b02c13", "title": "GridFace: Face Rectification via Learning Local Homography Transformations", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.06210.pdf"]}, {"id": "cfd4004054399f3a5f536df71f9b9987f060f434", "title": "Person Recognition in Social Media Photos", "year": "2018", "pdf": ["https://arxiv.org/pdf/1710.03224.pdf"]}, {"id": "7026aa20d83800aff72f2e13d02770d1e42acd2d", "title": "A Tale of Two Losses : Discriminative Deep Feature Learning for Person Re-Identification", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/4129/e1075c7856d8bebbf0655ae00a4843109429.pdf"]}, {"id": "50188f3b8d63e196af9ad156e8ff127e060d0aef", "title": "Metadata of the chapter that will be visualized in SpringerLink", "year": "", "pdf": ["https://pdfs.semanticscholar.org/5018/8f3b8d63e196af9ad156e8ff127e060d0aef.pdf"]}, {"id": "b216040f110d2549f61e3f5a7261cab128cab361", "title": "Weighted Voting of Discriminative Regions for Face Recognition", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/b216/040f110d2549f61e3f5a7261cab128cab361.pdf"]}, {"id": "0f65c91d0ed218eaa7137a0f6ad2f2d731cf8dab", "title": "Multi-Directional Multi-Level Dual-Cross Patterns for Robust Face Recognition", "year": "2016", "pdf": ["https://arxiv.org/pdf/1401.5311.pdf"]}, {"id": "1e9ace30e55c57c14f609fa45a459458ed40dd77", "title": "DisguiseNet: A Contrastive Approach for Disguised Face Verification in the Wild", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.09669.pdf"]}, {"id": "f5ab93e4ec9d0c80ae6c1378e865df2411f19752", "title": "Dict Layer: A Structured Dictionary Layer", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w11/Chen_Dict_Layer_A_CVPR_2018_paper.pdf"]}, {"id": "788a7b59ea72e23ef4f86dc9abb4450efefeca41", "title": "Robust Statistical Face Frontalization", "year": "2015", "pdf": ["http://eprints.eemcs.utwente.nl/26840/01/Pantic_Robust_Statistical_Face_Frontalization.pdf", "http://eprints.mdx.ac.uk/23776/1/C23.pdf", "http://ibug.doc.ic.ac.uk/media/uploads/documents/robust_frontalization.pdf", "http://openaccess.thecvf.com/content_iccv_2015/papers/Sagonas_Robust_Statistical_Face_ICCV_2015_paper.pdf"]}, {"id": "04e5d374c10b70a74d79070103cab1f362b113ba", "title": "DeepHash: Getting Regularization, Depth and Fine-Tuning Right", "year": "2015", "pdf": ["https://arxiv.org/pdf/1501.04711.pdf"]}, {"id": "16a766076d61dac7c1b72cf729319edbf582e31a", "title": "GB(2D)2 PCA-based convolutional network for face recognition", "year": "2017", "pdf": []}, {"id": "5af6201819bc2f57305096404bb220c36bfc5a8d", "title": "Character Recognition via a Compact Convolutional Neural Network", "year": "2017", "pdf": []}, {"id": "434cf041db74868ca625a0c2e11b6c0a5b2ed467", "title": "Deep Multi-task Learning for Large-Scale Image Classification", "year": "2017", "pdf": []}, {"id": "03ac1c694bc84a27621da6bfe73ea9f7210c6d45", "title": "Chapter 1 Introduction to information security foundations and applications", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/03ac/1c694bc84a27621da6bfe73ea9f7210c6d45.pdf"]}, {"id": "25e3fd1074968896fca45be20ca1d678438081fc", "title": "Group Invariant Deep Representations for Image Instance Retrieval", "year": "2017", "pdf": ["https://arxiv.org/pdf/1601.02093.pdf"]}, {"id": "dc13229afbbc8b7a31ed5adfe265d971850c0976", "title": "Learning from Millions of 3 D Scans for Large-scale 3 D Face Recognition", "year": "2017", "pdf": []}, {"id": "4b6ea82fa73d2137c884ad43f7865d88b24ff01d", "title": "How deep should be the depth of convolutional neural networks: a backyard dog case study", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.01516.pdf"]}, {"id": "e13bd9e4571d4ed604ca38859f065bd22186cadd", "title": "Pose Variability Compensation Using Projective Transformation for Forensic Face Recognition", "year": "2015", "pdf": ["http://subs.emis.de/LNI/Proceedings/Proceedings245/27.pdf", "https://repositorio.uam.es/bitstream/handle/10486/675256/pose_gonzalez_BIOSIG_2015_ps.pdf;jsessionid=81C6971D164AF5447CB1C18F891AA85C?sequence=1"]}, {"id": "cd6e32b00a53310f90a7138a41b855bf44129637", "title": "Persons-In-Places: a Deep Features Based Approach for Searching a Specific Person in a Specific Location", "year": "2017", "pdf": []}, {"id": "06214c4bdf2354b5a1a13958998d79bf46ac53ee", "title": "Multi-modality Network with Visual and Geometrical Information for Micro Emotion Recognition", "year": "2017", "pdf": ["http://shuaizhou.me/papers/FG17_microEmotion.pdf"]}, {"id": "e72f626074252b7e17ebc48d9fd4a4cd9d231359", "title": "Deep Feature Learning for Medical Image 2 Analysis with Convolutional Autoencoder 3 Neural Network", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e72f/626074252b7e17ebc48d9fd4a4cd9d231359.pdf"]}, {"id": "04ba06e60fce5cb7c882c00d6aaa2c846ba7b67b", "title": "Chromatin accessibility prediction via a hybrid deep convolutional neural network", "year": "2018", "pdf": []}, {"id": "0aebe97a92f590bdf21cdadfddec8061c682cdb2", "title": "Probabilistic Elastic Part Model: A Pose-Invariant Representation for Real-World Face Verification", "year": "2018", "pdf": []}, {"id": "2cbb4a2f8fd2ddac86f8804fd7ffacd830a66b58", "title": "Age and gender classification using convolutional neural networks", "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Levi_Age_and_Gender_2015_CVPR_paper.pdf", "http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf"]}, {"id": "4c60a78722404bcbcd9afab4636993e79cf96c72", "title": "Learning Invariant Representations Of Planar Curves", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.07807.pdf"]}, {"id": "e3582dffe5f3466cc5bc9d736934306c551ab33c", "title": "AttGAN: Facial Attribute Editing by Only Changing What You Want", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.10678.pdf"]}, {"id": "3c0fffd4cdbfef4ccd92d528d8b8a60ab0929827", "title": "An Empirical Study of Face Recognition under Variations", "year": "2018", "pdf": []}, {"id": "c7c8d150ece08b12e3abdb6224000c07a6ce7d47", "title": "DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1611.05271.pdf"]}, {"id": "d6bdc70d259b38bbeb3a78db064232b4b4acc88f", "title": "Video-Based Face Association and Identification", "year": "2017", "pdf": []}, {"id": "2c052a1c77a3ec2604b3deb702d77c41418c7d3e", "title": "What Is the Challenge for Deep Learning in Unconstrained Face Recognition?", "year": "2018", "pdf": []}, {"id": "969dd8bc1179c047523d257516ade5d831d701ad", "title": "A weakly supervised method for makeup-invariant face verification", "year": "2017", "pdf": ["http://liusi-group.com/pdf/faceverification-pr-2017.pdf"]}, {"id": "d818568838433a6d6831adde49a58cef05e0c89f", "title": "AgeDB: The First Manually Collected, In-the-Wild Age Database", "year": "2017", "pdf": ["http://eprints.mdx.ac.uk/22044/1/agedb_kotsia.pdf", "http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf", "https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf"]}, {"id": "bb4f83458976755e9310b241a689c8d21b481238", "title": "Improving Face Verification and Person Re-Identification Accuracy Using Hyperplane Similarity", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Jones_Improving_Face_Verification_ICCV_2017_paper.pdf", "http://www.merl.com/publications/docs/TR2017-155.pdf"]}, {"id": "23d55061f7baf2ffa1c847d356d8f76d78ebc8c1", "title": "Generic and attribute-specific deep representations for maritime vessels", "year": "2017", "pdf": ["https://ipsjcva.springeropen.com/track/pdf/10.1186/s41074-017-0033-4?site=ipsjcva.springeropen.com"]}, {"id": "0a3e33acb8dba18641db90cfec2c58c65fad9715", "title": "A Deep Visual Correspondence Embedding Model for Stereo Matching Costs", "year": "2015", "pdf": ["http://openaccess.thecvf.com/content_iccv_2015/papers/Chen_A_Deep_Visual_ICCV_2015_paper.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Chen_A_Deep_Visual_ICCV_2015_paper.pdf"]}, {"id": "04cb43806ca57040100b33af0781e4331f8daa56", "title": "Long-term Multi-granularity Deep Framework for Driver Drowsiness Detection", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.02325.pdf"]}, {"id": "d689063294e217f1ec8b83fe4b60e706f1934787", "title": "Simultaneous Face Detection and Pose Estimation Using Convolutional Neural Network Cascade", "year": "2018", "pdf": []}, {"id": "6850628658aafa61d0078b3dcb84f0a72910925a", "title": "Smartphone Continuous Authentication Using Deep Learning Autoencoders", "year": "2017", "pdf": []}, {"id": "e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227", "title": "Pairwise Relational Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04976.pdf"]}, {"id": "3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f", "title": "Enhancing convolutional neural networks for face recognition with occlusion maps and batch triplet loss", "year": "2018", "pdf": ["https://arxiv.org/pdf/1707.07923.pdf"]}, {"id": "8fde6363ee7e0a849f323a40fb2029da74056370", "title": "Gender, Makeup, Age and Illumination Prediction from Faces Using Ensemble Modeling", "year": "2018", "pdf": []}, {"id": "0fc4d0c328036cc197a48f278f7c15cb12860f3a", "title": "Learning a non-linear combination of Mahalanobis distances using statistical inference for similarity measure", "year": "2015", "pdf": []}, {"id": "1ffe20eb32dbc4fa85ac7844178937bba97f4bf0", "title": "Face Clustering: Representation and Pairwise Constraints", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.05067.pdf"]}, {"id": "a9196f0ef06460467836fe09d53737170c612e79", "title": "Recurrent convolution neural networks for classification of protein-protein interaction articles from biomedical literature", "year": "2017", "pdf": []}, {"id": "53d0cef0b415f0cab8b82e1f62a66f9511ea6eab", "title": "Similarity Function Learning with Data Uncertainty", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/53d0/cef0b415f0cab8b82e1f62a66f9511ea6eab.pdf"]}, {"id": "5f5164cf998a10d2bef37741adb562ab07fac413", "title": "A Comprehensive Study on Cross-View Gait Based Human Identification with Deep CNNs", "year": "2016", "pdf": ["http://www.ee.cuhk.edu.hk/~xgwang/papers/wuHWWTtpami16.pdf"]}, {"id": "1707179eda2021a19315af2c4ec2f7ae78595c4d", "title": "Cancer type prediction based on copy number aberration and chromatin 3D structure with convolutional neural networks", "year": "2018", "pdf": ["https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-018-4919-z"]}, {"id": "6a951a47aa545e08508b0b2c6a2bef45e154a3a9", "title": "DeepCoder: Semi-Parametric Variational Autoencoders for Automatic Facial Action Coding", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.02206.pdf"]}, {"id": "4cf5437ef31e587435ba1531da9109d714c0ee3e", "title": "Vehicle Re-identification Using Quadruple Directional Deep Learning Features", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.05163.pdf"]}, {"id": "132cc530230cb869318b0a9d81a717077895db38", "title": "Emancipation of Upper Bound Greedy Algorithm in Detection of Nodes in Social Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/132c/c530230cb869318b0a9d81a717077895db38.pdf"]}, {"id": "0e767d8a88cdeea1a4338817c0e6ea3640ba4232", "title": "Deep Learning Architectures for Face Recognition in Video Surveillance", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.09990.pdf"]}, {"id": "9cdb83ed96f5aa74bc4e2e9edacfbb5263e8fc37", "title": "Learning Mutual Visibility Relationship for Pedestrian Detection with a Deep Model", "year": "2016", "pdf": ["http://www.ee.cuhk.edu.hk/~xgwang/papers/ouyangZWijcv16.pdf"]}, {"id": "5239001571bc64de3e61be0be8985860f08d7e7e", "title": "Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling", "year": "2016", "pdf": ["https://arxiv.org/pdf/1607.06871.pdf"]}, {"id": "7a7a04a02e807d7c9cb90ab8442ac428904d2415", "title": "Automated Latent Fingerprint Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1704.01925.pdf"]}, {"id": "c69916375fec3c3ebba3aafb31c99a2beb0151c4", "title": "Face recognition in video surveillance from a single reference sample through domain adaptation", "year": "2017", "pdf": []}, {"id": "a9e8c08c69b8752a8afad752ec26a2b3807ede50", "title": "PersEmoN: A Deep Network for Joint Analysis of Apparent Personality, Emotion and Their Relationship", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.08657.pdf"]}, {"id": "c7f752eea91bf5495a4f6e6a67f14800ec246d08", "title": "EXPLORING THE TRANSFER LEARNING ASPECT OF DEEP NEURAL NETWORKS IN FACIAL INFORMATION PROCESSING", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/c7f7/52eea91bf5495a4f6e6a67f14800ec246d08.pdf"]}, {"id": "0dccc881cb9b474186a01fd60eb3a3e061fa6546", "title": "Effective face frontalization in unconstrained images", "year": "2015", "pdf": ["https://arxiv.org/pdf/1411.7964.pdf"]}, {"id": "9199c2b8cdad80735651a6a8bb9115c83acae650", "title": "Deep partial person re-identification via attention model", "year": "2017", "pdf": []}, {"id": "60cd4ba089d0b078cdac0db311099493b55624d8", "title": "Local Deep Neural Networks for gender recognition", "year": "2016", "pdf": ["https://riunet.upv.es/bitstream/handle/10251/84826/main_plain.pdf?isAllowed=y&sequence=3"]}, {"id": "596d530cd19e1caca2084a672b9c2a92e27e89a8", "title": "An Efficient Method for Document Categorization Based on Word2vec and Latent Semantic Analysis", "year": "2015", "pdf": []}, {"id": "8879083463a471898ff9ed9403b84db277be5bf6", "title": "Regression Facial Attribute Classification via simultaneous dictionary learning", "year": "2017", "pdf": []}, {"id": "271fbc4c09b3f2eb9f56dc2bbac89262b3bc083d", "title": "Domain Adaptation with Soft-margin multiple feature-kernel learning beats Deep Learning for surveillance face recognition", "year": "2016", "pdf": ["https://arxiv.org/pdf/1610.01374.pdf"]}, {"id": "d557ee62524958761bd6f472655f9950557c6212", "title": "A multi-scene deep learning model for image aesthetic evaluation", "year": "2016", "pdf": []}, {"id": "01f21ad0eccdbb56dd60c397a27415b9f33d5ec3", "title": "Learning Contextual Dependence With Convolutional Hierarchical Recurrent Neural Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1509.03877.pdf"]}, {"id": "85956f6431543d1bf62bb5d5143de4348f14a95c", "title": "Detecting Adversarial Perturbations Through Spatial Behavior in Activation Spaces", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.09043.pdf"]}, {"id": "d7453fa0c70a15681e76b509fff6e1dd49f5a4a5", "title": "Indian Classical Dance Action Identification and Classification with Convolutional Neural Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/d745/3fa0c70a15681e76b509fff6e1dd49f5a4a5.pdf"]}, {"id": "529a044e1d54e5b97085b67c740709485b60bec5", "title": "A study on Deep Neural Networks framework", "year": "2016", "pdf": []}, {"id": "cf34bda14a2f6148f330213e0ec0dbfe3062c959", "title": "Concatenative Resynthesis Using Twin Networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/cf34/bda14a2f6148f330213e0ec0dbfe3062c959.pdf"]}, {"id": "9710ad1ec252ef59c988cd7555bcc1be6ef88ed9", "title": "Composition-Preserving Deep Photo Aesthetics Assessment", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Mai_Composition-Preserving_Deep_Photo_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Mai_Composition-Preserving_Deep_Photo_CVPR_2016_paper.pdf"]}, {"id": "97f3d35d3567cd3d973c4c435cdd6832461b7c3c", "title": "Unleash the Black Magic in Age: A Multi-Task Deep Neural Network Approach for Cross-Age Face Verification", "year": "2017", "pdf": []}, {"id": "6cacda04a541d251e8221d70ac61fda88fb61a70", "title": "One-shot Face Recognition by Promoting Underrepresented Classes", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.05574.pdf"]}, {"id": "0db8e6eb861ed9a70305c1839eaef34f2c85bbaf", "title": "Towards Large-Pose Face Frontalization in the Wild", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.06244.pdf"]}, {"id": "8cd9475a3a1b2bcccf2034ce8f4fe691c57a4889", "title": "Noisy Face Image Sets Refining Collaborated with Discriminant Feature Space Learning", "year": "2017", "pdf": []}, {"id": "59f65b2a3a50b64193ee09dac29137cdd8dc6688", "title": "Learning Similarity Metrics by Factorising Adjacency Matrices", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/ab10/88f765b5e9180cce71624ca2d1990ebd719c.pdf"]}, {"id": "05a6a40c840c069631a825509f3095697592e1c4", "title": "IAN: The Individual Aggregation Network for Person Search", "year": "2019", "pdf": ["https://arxiv.org/pdf/1705.05552.pdf"]}, {"id": "ab87ab1cf522995510561cd9f494223704f1de91", "title": "Human Centric Facial Expression Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ab87/ab1cf522995510561cd9f494223704f1de91.pdf"]}, {"id": "8458efc65d0b2ef9b23c0f4f2a41f206fcaa787c", "title": "Indexing of the CNN features for the large scale image search", "year": "2018", "pdf": ["https://arxiv.org/pdf/1508.00217.pdf"]}, {"id": "19e3f57055f952e3fd277a742fa15650335e76fd", "title": "Locality Constrained Deep Supervised Hashing for Image Retrieval", "year": "2017", "pdf": ["https://www.ijcai.org/proceedings/2017/0499.pdf"]}, {"id": "c50e498ede6f5216cffd0645e747ce67fae2096a", "title": "Low-Resolution Face Recognition in the Wild via Selective Knowledge Distillation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.09998.pdf"]}, {"id": "2604aa10fee1900451fe0ddd115c413b0204d1df", "title": "An Effective Tread Pattern Image Classification Algorithm based on Transfer Learning", "year": "2018", "pdf": []}, {"id": "bd5ea34000675be41f3fdc5d57ec2152ccd37fa5", "title": "A novel deep learning algorithm for incomplete face recognition: Low-rank-recovery network", "year": "2017", "pdf": []}, {"id": "1a2431e3b35a4a4794dc38ef16e9eec2996114a1", "title": "Automated Face Recognition: Challenges and Solutions", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1a24/31e3b35a4a4794dc38ef16e9eec2996114a1.pdf"]}, {"id": "332548fd2e52b27e062bd6dcc1db0953ced6ed48", "title": "Low-Shot Face Recognition with Hybrid Classifiers", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Wu_Low-Shot_Face_Recognition_ICCV_2017_paper.pdf"]}, {"id": "ea5fdb7f6c2e94d1a67bff622c566ddc66be19ab", "title": "Face recognition based on convolutional neural network and support vector machine", "year": "2016", "pdf": []}, {"id": "7f04b65f2c6f96c7ce000f537fb691a93f61db52", "title": "Geometrical and Visual Feature Quantization for 3D Face Recognition", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7f04/b65f2c6f96c7ce000f537fb691a93f61db52.pdf"]}, {"id": "20e504782951e0c2979d9aec88c76334f7505393", "title": "Robust LSTM-Autoencoders for Face De-Occlusion in the Wild", "year": "2018", "pdf": ["https://arxiv.org/pdf/1612.08534.pdf"]}, {"id": "f60070d3a4d333aa1436e4c372b1feb5b316a7ba", "title": "Face Recognition via Centralized Coordinate Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05678.pdf"]}, {"id": "30861d747c87e2e838c1c30eed334b17cc93cdb6", "title": "Bootstrapping Face Detection with Hard Negative Examples", "year": "2016", "pdf": ["https://arxiv.org/pdf/1608.02236.pdf"]}, {"id": "6f206b46c26b70b3be0b1e89b1d4b6518b601005", "title": "Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.03044.pdf"]}, {"id": "09f5033e1e91dae1f7f31cba2b65bbff1d5f8ca3", "title": "Face Recognition Based on Densely Connected Convolutional Networks", "year": "2018", "pdf": []}, {"id": "610c62bd933c82b609555692ca7f8e9b77934034", "title": "DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/edee/e1e8c4ceb219aa1efce61eccc6955e48ddde.pdf"]}, {"id": "b72eebffe697008048781ab7b768e0c96e52236a", "title": "Discriminative Covariance Oriented Representation Learning for Face Recognition with Image Sets", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Wang_Discriminative_Covariance_Oriented_CVPR_2017_paper.pdf", "http://openaccess.thecvf.com/content_cvpr_2017/supplemental/Wang_Discriminative_Covariance_Oriented_2017_CVPR_supplemental.pdf", "http://vipl.ict.ac.cn/homepage/rpwang/publications/Discriminative%20Covariance%20Oriented%20Representation%20Learning%20for%20Face%20Recognition%20with%20Image%20Sets_CVPR2017.pdf"]}, {"id": "5c2a4e1db32a6afeb294920de1999210bf1bcc6d", "title": "StoryRoleNet: Social Network Construction of Role Relationship in Video", "year": "2018", "pdf": []}, {"id": "710b7a0c45ca6ba84768025ed1a02804a9530ea9", "title": "Illumination invariant single face image recognition under heterogeneous lighting condition", "year": "2017", "pdf": ["http://isee.sysu.edu.cn/~zhwshi/Research/PreprintVersion/Illumination%20Invariant%20Single%20Face%20Image%20Recognition%20under%20Heterogeneous%20Lighting%20Condition.pdf"]}, {"id": "998bb8720fe25c6b38fbc70b1142fafde46e39e5", "title": "Joint Feature and Similarity Deep Learning for Vehicle Re-identification", "year": "2018", "pdf": []}, {"id": "72a55554b816b66a865a1ec1b4a5b17b5d3ba784", "title": "Real-Time Face Identification via CNN and Boosted Hashing Forest", "year": "2016", "pdf": ["http://vislab.ucr.edu/Biometrics16/CVPRW_Vizilter.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w4/papers/Vizilter_Real-Time_Face_Identification_CVPR_2016_paper.pdf"]}, {"id": "3d85cf942efda695347c7d95485fcd1e6796ee3a", "title": "Generating Photo-Realistic Training Data to Improve Face Recognition Accuracy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00112.pdf"]}, {"id": "4953dc81247efe5a1c28c79fd1d4ab69bbb9f21c", "title": "Structured Deep Hashing with Convolutional Neural Networks for Fast Person Re-identification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1702.04179.pdf"]}, {"id": "af9419f2155785961a5c16315c70b8228435d5f8", "title": "50 years of biometric research: Accomplishments, challenges, and opportunities", "year": "2016", "pdf": ["http://www.cse.msu.edu/rgroups/biometrics/Publications/GeneralBiometrics/JainNandakumarRoss_50Years_PRL2016.pdf"]}, {"id": "298a10dd069404f8846b5f82f46441385e7e4486", "title": "Joint Verification-Identification in end-to-end Multi-Scale CNN Framework for Topic Identification", "year": "2018", "pdf": ["http://mirlab.org/conference_papers/International_Conference/ICASSP%202018/pdfs/0006199.pdf"]}, {"id": "629093211c6ef089fe53680472c147af9af678d4", "title": "SmileNet: Registration-Free Smiling Face Detection In The Wild", "year": "2017", "pdf": ["https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/36405/Jang%20SmileNet%20Registration-Free%202018%20Published.pdf?sequence=1", "https://www.cl.cam.ac.uk/~hg410/JangEtAl_ICCVW2017.pdf", "https://www.repository.cam.ac.uk/bitstream/handle/1810/267848/JangEtAl-ICCVW-2017-final.pdf?isAllowed=y&sequence=1"]}, {"id": "7959218f3beadbb058844552874547520799a3f9", "title": "Driving posture recognition by convolutional neural networks", "year": "2015", "pdf": []}, {"id": "4f53f80cc0d11beb3a086b98ba8ebaed6ec688de", "title": "Task Specific Networks for Identity and Face Variation", "year": "2018", "pdf": []}, {"id": "677251fae7ccc62bb776374daee146cc2b7f0f4b", "title": "DeepCoder: Semi-parametric Variational Autoencoders for Facial Action Unit Intensity Estimation", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/6772/51fae7ccc62bb776374daee146cc2b7f0f4b.pdf"]}, {"id": "79584ed8638392e253ffae2d5ec936239d088285", "title": "An approach to face detection and alignment using hough transformation with convolution neural network", "year": "2016", "pdf": []}, {"id": "fdaf65b314faee97220162980e76dbc8f32db9d6", "title": "Face recognition using both visible light image and near-infrared image and a deep network", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/fdaf/65b314faee97220162980e76dbc8f32db9d6.pdf"]}, {"id": "1280b35e4a20036fcfd82ee09f45a3fca190276f", "title": "Face Verification Based on Feature Transfer via PCA-SVM Framework", "year": "2017", "pdf": []}, {"id": "ebf877db5fb6aadbc09d74325f4f9d29a192018a", "title": "Embedding Model for Stereo Matching Costs", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/ebf8/77db5fb6aadbc09d74325f4f9d29a192018a.pdf"]}, {"id": "08307351e8f2a40d7ff9bbee8deaa54dc1bad055", "title": "Face Recognition Based on CSGF(2D)2PCANet", "year": "2018", "pdf": []}, {"id": "ec33350d7c4dd7a3b35bf6d7cf799af4ac1796a0", "title": "Learning towards Minimum Hyperspherical Energy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.09298.pdf"]}, {"id": "7c4022dd2525882a0f7ba0d60db1c6290d5a9aa8", "title": "CSRNCVA: A MODEL OF CROSS-MEDIA SEMANTIC RETRIEVAL BASED ON NEURAL COMPUTING OF VISUAL AND AUDITORY SENSATIONS", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4adf/8347568a08b27dd76461db9aaef7566fd29e.pdf"]}, {"id": "c7a9a6f421c7ee9390150aa0b48e6a35761e1cd6", "title": "Facial recognition using histogram of gradients and support vector machines", "year": "2017", "pdf": []}, {"id": "59fc69b3bc4759eef1347161e1248e886702f8f7", "title": "Final Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/59fc/69b3bc4759eef1347161e1248e886702f8f7.pdf"]}, {"id": "c1f05b723e53ac4eb1133249b445c0011d42ca79", "title": "Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review", "year": "2017", "pdf": []}, {"id": "7a2b3eed5eeecf0b442d56b93dfda8cb88c10bf7", "title": "Deep learning for a smart e-learning system", "year": "2018", "pdf": []}, {"id": "1fb1f74bbea8d2b3bf5a4c2834f4774daf6398c8", "title": "License plate recognition based on temporal redundancy", "year": "2016", "pdf": ["http://www.ssig.dcc.ufmg.br/wp-content/uploads/2016/11/dissertation_2016_Gabriel.pdf", "http://www.ssig.dcc.ufmg.br/wp-content/uploads/2016/11/paper_2016_ITSC.pdf"]}, {"id": "c68ec931585847b37cde9f910f40b2091a662e83", "title": "A Comparative Evaluation of Dotted Raster-Stereography and Feature-Based Techniques for Automated Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/c68e/c931585847b37cde9f910f40b2091a662e83.pdf"]}, {"id": "988d1295ec32ce41d06e7cf928f14a3ee079a11e", "title": "Semantic Deep Learning", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/988d/1295ec32ce41d06e7cf928f14a3ee079a11e.pdf"]}, {"id": "5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f", "title": "Targeting Ultimate Accuracy: Face Recognition via Deep Embedding", "year": "2015", "pdf": ["https://arxiv.org/pdf/1506.07310.pdf"]}, {"id": "69adf2f122ff18848ff85e8de3ee3b2bc495838e", "title": "Arbitrary Facial Attribute Editing: Only Change What You Want", "year": "2017", "pdf": []}, {"id": "260a57f4d099f3f2a2c2b458e92de15e4e4a47fc", "title": "Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017/papers/Hu_Attribute-Enhanced_Face_Recognition_ICCV_2017_paper.pdf", "https://pure.qub.ac.uk/portal/files/138226397/ICCV2017_Attribute_Enhanced_Face_Recognition_with_Neural_Tensor_Fusion_Networks.pdf", "https://www.research.ed.ac.uk/portal/files/41072997/hu2017neuralTensor.pdf"]}, {"id": "52e896bb4e1b7051131203a4861d4b1f172a2eb7", "title": "Face identification using some novel local descriptors under the influence of facial complexities", "year": "2018", "pdf": []}, {"id": "7903bccf6f98436f4916419e5450d1bb890876ea", "title": "Analysis of Spatiotemporal Ensemble Data Using Machine Learning", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/7903/bccf6f98436f4916419e5450d1bb890876ea.pdf"]}, {"id": "571b83f7fc01163383e6ca6a9791aea79cafa7dd", "title": "SeqFace: Make full use of sequence information for face recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.06524.pdf"]}, {"id": "4f0b641860d90dfa4c185670bf636149a2b2b717", "title": "Improve Cross-Domain Face Recognition with IBN-block", "year": "2018", "pdf": []}, {"id": "390f3d7cdf1ce127ecca65afa2e24c563e9db93b", "title": "Learning and Transferring Multi-task Deep Representation for Face Alignment", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/6e80/a3558f9170f97c103137ea2e18ddd782e8d7.pdf"]}, {"id": "8c9b29d6df5601d0bc9f6164d99a26a1cb1e256d", "title": "Two-Dimensional Joint Bayesian Method for Face Verification", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/8c9b/29d6df5601d0bc9f6164d99a26a1cb1e256d.pdf"]}, {"id": "bd53d3249cae4606e06999ee62f53bba6c4494d9", "title": "A deep convolutional network for medical image super-resolution", "year": "2017", "pdf": []}, {"id": "3b557c4fd6775afc80c2cf7c8b16edde125b270e", "title": "Face recognition: Perspectives from the real world", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.02999.pdf"]}, {"id": "b6d794f73ef7f2a6ffb4738a7dee334f512046bf", "title": "Deep Learning Algorithms with Applications to Video Analytics for A Smart City: A Survey", "year": "2015", "pdf": ["https://arxiv.org/pdf/1512.03131.pdf"]}, {"id": "19c53302bda8a82ec40d314a85b1713f43058a1a", "title": "Deep learning models of biological visual information processing", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/19c5/3302bda8a82ec40d314a85b1713f43058a1a.pdf"]}, {"id": "57283eea328099f878978ebcb382b06d9c6c20de", "title": "Flow of Information in Feed-Forward Denoising Neural Networks", "year": "2018", "pdf": []}, {"id": "cdae8e9cc9d605856cf5709b2fdf61f722d450c1", "title": "Deep Learning for Biometrics : A Survey KALAIVANI SUNDARARAJAN", "year": "2018", "pdf": []}, {"id": "84dcf04802743d9907b5b3ae28b19cbbacd97981", "title": "Face Detection using Deep Learning: An Improved Faster RCNN Approach", "year": "2018", "pdf": ["https://arxiv.org/pdf/1701.08289.pdf"]}, {"id": "7b455cbb320684f78cd8f2443f14ecf5f50426db", "title": "A Fast and Robust Negative Mining Approach for Enrollment in Face Recognition Systems", "year": "2017", "pdf": ["http://repositorio.unicamp.br/jspui/bitstream/REPOSIP/275553/1/Martins_SamuelBotter_M.pdf"]}, {"id": "8a02a0517b841b53fba478a851948b86869a0582", "title": "Fast Neural Networks with Circulant Projections", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/9e75/ebb1225bf605814deac5d01ca8d0002552c6.pdf"]}, {"id": "ae32279ce2828286a40800045b2d9f3b53bebb8c", "title": "Traffic Signs Recognition and Classification based on Deep Feature Learning", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ae32/279ce2828286a40800045b2d9f3b53bebb8c.pdf"]}, {"id": "9d0edb19cd5615e3a7bf5e9b7c1628dd5ddf633b", "title": "Sample pair based sparse representation classification for face recognition", "year": "2016", "pdf": []}, {"id": "10554bc4fb045d303abee266bc2c548dae5e187d", "title": "Identifying Synapses Using Deep and Wide Multiscale Recursive Networks.", "year": "2014", "pdf": ["https://arxiv.org/pdf/1409.1789.pdf"]}, {"id": "34cf90fcbf83025666c5c86ec30ac58b632b27b0", "title": "Learning Deep Context-Aware Features over Body and Latent Parts for Person Re-identification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.06555.pdf"]}, {"id": "19075e854e29edce89a1cb39167eb1af06b86fe5", "title": "GraphBit: Bitwise Interaction Mining via Deep Reinforcement Learning", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018/papers/Duan_GraphBit_Bitwise_Interaction_CVPR_2018_paper.pdf"]}, {"id": "ef4b5bcaad4c36d7baa7bc166bd1712634c7ad71", "title": "Towards Spatio-temporal Face Alignment in Unconstrained Conditions", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ef4b/5bcaad4c36d7baa7bc166bd1712634c7ad71.pdf"]}, {"id": "3b2e6f8426de08a330ce15dbde8eaceadc7e7311", "title": "Face Classification Based on Natural Features and Decision Tree", "year": "2016", "pdf": []}, {"id": "9590ba45a42e7fdeec4e8ebcda69e80f11b9c1e6", "title": "Single-Sample Face Recognition Based on LPP Feature Transfer", "year": "2016", "pdf": ["http://www.syslog.co.in/java-projects/image-processing-projects/Single%20Single-sample%20Fa%20sample%20Fa%20sample%20Face%20Recognition.pdf"]}, {"id": "8e9ff8224753b22e3b1f8bbe271382d6fdb8ddfa", "title": "Scale optimization for full-image-CNN vehicle detection", "year": "2017", "pdf": ["https://arxiv.org/pdf/1802.06926.pdf"]}, {"id": "2306b2a8fba28539306052764a77a0d0f5d1236a", "title": "Surveillance Face Recognition Challenge", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.09691.pdf"]}]}