Paper Titles that do not match

keynameour titlefound titleaddresss2 id
10k_US_adult_faces10K US Adult FacesThe intrinsic memorability of face imagesThe intrinsic memorability of face photographs.[pdf][s2]8b2dd5c61b23ead5ae5508bb8ce808b5ea266730
3dddb_unconstrained3D DynamicA 3D Dynamic Database for Unconstrained Face RecognitionA 3 D Dynamic Database for Unconstrained Face Recognition[pdf][s2]4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461
afadAFADOrdinal Regression with a Multiple Output CNN for Age EstimationOrdinal Regression with Multiple Output CNN for Age Estimation[pdf][s2]6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c
afwAFWFace detection, pose estimation and landmark localization in the wildFace detection, pose estimation, and landmark localization in the wild[pdf][s2]University of California, Irvine0e986f51fe45b00633de9fd0c94d082d2be51406
alert_airportALERT AirportA Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and DatasetsA Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets.[pdf][s2]6403117f9c005ae81f1e8e6d1302f4a045e3d99d
am_fedAM-FEDAffectiva MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected “In the Wild”Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"[pdf][s2]47aeb3b82f54b5ae8142b4bdda7b614433e69b9a
bjut_3dBJUT-3DThe BJUT-3D Large-Scale Chinese Face DatabaseA novel face recognition method based on 3D face model[pdf][s2]1ed1a49534ad8dd00f81939449f6389cfbc25321
bp4d_spontanousBP4D-SpontanousA high resolution spontaneous 3D dynamic facial expression databaseA high-resolution spontaneous 3D dynamic facial expression database[pdf][s2]SUNY Binghamtonb91f54e1581fbbf60392364323d00a0cd43e493c
brainwashBrainwashBrainwash datasetBrainwash: A Data System for Feature Engineering[pdf][s2]214c966d1f9c2a4b66f4535d9a0d4078e63a5867
camelCAMELCAMEL Dataset for Visual and Thermal Infrared Multiple Object Detection and TrackingApplication of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis[pdf][s2]5801690199c1917fa58c35c3dead177c0b8f9f2d
casablancaCasablancaContext-aware {CNNs} for person head detectionContext-Aware CNNs for Person Head Detection[pdf][s2]0ceda9dae8b9f322df65ca2ef02caca9758aec6f
cfdCFDThe Chicago face database: A free stimulus set of faces and norming dataThe Chicago face database: A free stimulus set of faces and norming data.[pdf][s2]4df3143922bcdf7db78eb91e6b5359d6ada004d2
cmu_pieCMU PIEThe CMU Pose, Illumination, and Expression DatabaseThe CMU Pose, Illumination, and Expression (PIE) Database[pdf][s2]4d423acc78273b75134e2afd1777ba6d3a398973
columbia_gazeColumbia GazeGaze Locking: Passive Eye Contact Detection for Human–Object InteractionGaze locking: passive eye contact detection for human-object interaction[pdf][s2]06f02199690961ba52997cde1527e714d2b3bf8f
cvc_01_barcelonaCVC-01Adaptive Image Sampling and Windows Classification for On-board Pedestrian DetectionAdaptive Image Sampling and Windows Classification for On – board Pedestrian Detection[pdf][s2]57fe081950f21ca03b5b375ae3e84b399c015861
d3dfacsD3DFACSA FACS Valid 3D Dynamic Action Unit database with Applications to 3D Dynamic Morphable Facial ModellingA FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling[pdf][s2]Jacobs University070de852bc6eb275d7ca3a9cdde8f6be8795d1a3
dartmouth_childrenDartmouth ChildrenThe Dartmouth Database of Children's Faces: Acquisition and validation of a new face stimulus setThe Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set[pdf][s2]4e6ee936eb50dd032f7138702fa39b7c18ee8907
disfaDISFADISFA: A Spontaneous Facial Action Intensity DatabaseExtended DISFA Dataset: Investigating Posed and Spontaneous Facial Expressions[pdf][s2]a5acda0e8c0937bfed013e6382da127103e41395
face_research_labFace Research Lab LondonFace Research Lab London Set. figshareAnxiety promotes memory for mood-congruent faces but does not alter loss aversion.[pdf][s2]University College Londonc6526dd3060d63a6c90e8b7ff340383c4e0e0dd8
fddbFDDBFDDB: A Benchmark for Face Detection in Unconstrained SettingsA Benchmark for Face Detection in Unconstrained Settings[pdf][s2]University of Massachusetts75da1df4ed319926c544eefe17ec8d720feef8c0
feiFEICaptura e Alinhamento de Imagens: Um Banco de Faces BrasileiroGeneralização cartográfica automatizada para um banco de dados cadastral[pdf][s2]b6b1b0632eb9d4ab1427278f5e5c46f97753c73d
frgcFRGCOverview of the Face Recognition Grand ChallengeOverview of the face recognition grand challenge[pdf][s2]18ae7c9a4bbc832b8b14bc4122070d7939f5e00e
gavab_dbGavabGavabDB: a 3D face databaseExpression invariant 3D face recognition with a Morphable Model[pdf][s2]42505464808dfb446f521fc6ff2cfeffd4d68ff1
georgia_tech_face_databaseGeorgia Tech FaceMaximum likelihood training of the embedded HMM for face detection and recognitionMAXIMUM LIKELIHOOD TRAINING OF THE EMBEDDED HMM FOR FACE DETECTION AND RECOGNITION Ara V. Ne an and Monson H. Hayes III Center for Signal and Image Processing School of Electrical and Computer Engineering[pdf][s2]3dc3f0b64ef80f573e3a5f96e456e52ee980b877
hda_plusHDA+A Multi-camera video data set for research on High-Definition surveillanceHDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance[pdf][s2]bd88bb2e4f351352d88ee7375af834360e223498
hi4d_adsipHi4D-ADSIPHi4D-ADSIP 3-D dynamic facial articulation databaseHigh-resolution comprehensive 3-D dynamic database for facial articulation analysis[pdf][s2]24830e3979d4ed01b9fd0feebf4a8fd22e0c35fd
hrt_transgenderHRT TransgenderFace recognition across gender transformation using SVM ClassifierFace recognition: A literature survey[pdf][s2]28312c3a47c1be3a67365700744d3d6665b86f22
ifadIFADIndian Face Age Database: A Database for Face Recognition with Age VariationIndian Face Age Database : A Database for Face Recognition with Age Variation[pdf][s2]55c40cbcf49a0225e72d911d762c27bb1c2d14aa
ijb_cIJB-CIARPA Janus Benchmark CIARPA Janus Benchmark - C: Face Dataset and Protocol[pdf][s2]57178b36c21fd7f4529ac6748614bb3374714e91
ilids_mctsImagery Library for Intelligent Detection Systems: The i-LIDS User GuideImagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems[pdf][s2]0297448f3ed948e136bb06ceff10eccb34e5bb77
ilids_vid_reidiLIDS-VIDPerson Re-Identi cation by Video RankingPerson Re-identification by Video Ranking[pdf][s2]98bb029afe2a1239c3fdab517323066f0957b81b
images_of_groupsImages of GroupsUnderstanding Groups of Images of PeopleUnderstanding images of groups of people[pdf][s2]21d9d0deed16f0ad62a4865e9acf0686f4f15492
imm_faceIMM Face DatasetThe IMM Face Database - An Annotated Dataset of 240 Face ImagesAnnotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization[pdf][s2]a74251efa970b92925b89eeef50a5e37d9281ad0
kdefKDEFThe Karolinska Directed Emotional Faces – KDEFGaze fixation and the neural circuitry of face processing in autism[pdf][s2]93884e46c49f7ae1c7c34046fbc28882f2bd6341
kittiKITTIVision meets Robotics: The KITTI DatasetThe Role of Machine Vision for Intelligent Vehicles[pdf][s2]35ba4ebfd017a56b51e967105af9ae273c9b0178
lfwLFWLabeled Faces in the Wild: A SurveyLabeled Faces in the Wild : A Survey[pdf][s2]7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22
lfwLFWLabeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained EnvironmentsLabeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments[pdf][s2]370b5757a5379b15e30d619e4d3fb9e8e13f3256
lfwLFWLabeled Faces in the Wild: Updates and New Reporting ProceduresLabeled Faces in the Wild : Updates and New Reporting Procedures[pdf][s2]University of Massachusetts2d3482dcff69c7417c7b933f22de606a0e8e42d4
m2vtsm2vtsThe M2VTS Multimodal Face Database (Release 1.00)The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations[pdf][s2]2485c98aa44131d1a2f7d1355b1e372f2bb148ad
m2vtsdb_extendedxm2vtsdbXM2VTSDB: The Extended M2VTS DatabaseLabeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments[pdf][s2]370b5757a5379b15e30d619e4d3fb9e8e13f3256
malfMALFFine-grained Evaluation on Face Detection in the Wild.Fine-grained evaluation on face detection in the wild[pdf][s2]Chinese Academy of Sciences45e616093a92e5f1e61a7c6037d5f637aa8964af
mcgillMcGill Real WorldHierarchical Temporal Graphical Model for Head Pose Estimation and Subsequent Attribute Classification in Real-World VideosRobust semi-automatic head pose labeling for real-world face video sequences[pdf][s2]McGill Universityc570d1247e337f91e555c3be0e8c8a5aba539d9f
motMOTEvaluating Multiple Object Tracking Performance: The CLEAR MOT MetricsLearning to associate: HybridBoosted multi-target tracker for crowded scene[pdf][s2]5981e6479c3fd4e31644db35d236bfb84ae46514
motMOTPerformance Measures and a Data Set for Multi-Target, Multi-Camera TrackingLearning to associate: HybridBoosted multi-target tracker for crowded scene[pdf][s2]5981e6479c3fd4e31644db35d236bfb84ae46514
mr2MR2The MR2: A multi-racial mega-resolution database of facial stimuliThe MR2: A multi-racial, mega-resolution database of facial stimuli.[pdf][s2]578d4ad74818086bb64f182f72e2c8bd31e3d426
mtflMTFLFacial Landmark Detection by Deep Multi-task LearningLearning Deep Representation for Face Alignment with Auxiliary Attributes[pdf][s2]a0fd85b3400c7b3e11122f44dc5870ae2de9009a
muctMUCTThe MUCT Landmarked Face DatabaseAnnotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization[pdf][s2]a74251efa970b92925b89eeef50a5e37d9281ad0
multi_pieMULTIPIEMulti-PIEScheduling heterogeneous multi-cores through performance impact estimation (PIE)[pdf][s2]109df0e8e5969ddf01e073143e83599228a1163f
names_and_faces_newsNews DatasetNames and FacesNames and faces in the news[pdf][s2]2fda164863a06a92d3a910b96eef927269aeb730
nova_emotionsNovaemötions DatasetCompetitive affective gamming: Winning with a smileCompetitive affective gaming: winning with a smile[pdf][s2]7f4040b482d16354d5938c1d1b926b544652bf5b
pilot_parliamentPPBGender Shades: Intersectional Accuracy Disparities in Commercial Gender Classi cationSummary of Research on Informant Accuracy in Network Data, 11 and on the Reverse Small World Problem[pdf][s2]fb82681ac5d3487bd8e52dbb3d1fa220eeac855e
put_facePut FaceThe PUT face databaseLabeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments[pdf][s2]370b5757a5379b15e30d619e4d3fb9e8e13f3256
scfaceSCfaceSCface – surveillance cameras face databaseLarge Variability Surveillance Camera Face Database[pdf][s2]f3b84a03985de3890b400b68e2a92c0a00afd9d0
sdu_vidSDU-VIDPerson reidentification by video rankingPerson Re-identification by Video Ranking[pdf][s2]98bb029afe2a1239c3fdab517323066f0957b81b
sheffieldSheffield FaceFace Recognition: From Theory to ApplicationsFace Description with Local Binary Patterns: Application to Face Recognition[pdf][s2]3607afdb204de9a5a9300ae98aa4635d9effcda2
stanford_droneStanford DroneLearning Social Etiquette: Human Trajectory Prediction In Crowded ScenesSocial LSTM: Human Trajectory Prediction in Crowded Spaces[pdf][s2]570f37ed63142312e6ccdf00ecc376341ec72b9f
stickmen_buffyBuffy StickmenLearning to Parse Images of Articulated ObjectsLearning to parse images of articulated bodies[pdf][s2]6dd0597f8513dc100cd0bc1b493768cde45098a9
stickmen_pascalStickmen PASCALClustered Pose and Nonlinear Appearance Models for Human Pose EstimationLearning to parse images of articulated bodies[pdf][s2]6dd0597f8513dc100cd0bc1b493768cde45098a9
stickmen_pascalStickmen PASCALLearning to Parse Images of Articulated ObjectsLearning to parse images of articulated bodies[pdf][s2]6dd0597f8513dc100cd0bc1b493768cde45098a9
sun_attributesSUNSUN Attribute Database: Discovering, Annotating, and Recognizing Scene AttributesSUN attribute database: Discovering, annotating, and recognizing scene attributes[pdf][s2]833fa04463d90aab4a9fe2870d480f0b40df446e
tiny_imagesTiny Images80 million tiny images: a large dataset for non-parametric object and scene recognition80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition[pdf][s2]31b58ced31f22eab10bd3ee2d9174e7c14c27c01
umd_facesUMDThe Do's and Don'ts for CNN-based Face VerificationThe Do’s and Don’ts for CNN-Based Face Verification[pdf][s2]71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6
viperVIPeREvaluating Appearance Models for Recognition, Reacquisition, and TrackingEvaluating Appearance Models for Recognition , Reacquisition , and Tracking[pdf][s2]6273b3491e94ea4dd1ce42b791d77bdc96ee73a8
who_goes_thereWGTWho Goes There? Approaches to Mapping Facial Appearance DiversityWho goes there?: approaches to mapping facial appearance diversity[pdf][s2]9b9bf5e623cb8af7407d2d2d857bc3f1b531c182
wildtrackWildTrackWILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian DetectionWILDTRACK : A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection[pdf][s2]77c81c13a110a341c140995bedb98101b9e84f7f