Paper Titles that do not match

keynameour titlefound titleaddresss2 id
10k_US_adult_faces10K US Adult FacesThe intrinsic memorability of face imagesThe intrinsic memorability of face photographs.[pdf][s2]8b2dd5c61b23ead5ae5508bb8ce808b5ea266730
afadAFADOrdinal Regression with a Multiple Output CNN for Age EstimationOrdinal Regression with Multiple Output CNN for Age Estimation[pdf][s2]6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c
afwAFWFace detection, pose estimation and landmark localization in the wildFace detection, pose estimation, and landmark localization in the wild[pdf][s2]0e986f51fe45b00633de9fd0c94d082d2be51406
am_fedAM-FEDAffectiva MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected “In the Wild”Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"[pdf][s2]47aeb3b82f54b5ae8142b4bdda7b614433e69b9a
bp4d_spontanousBP4D-SpontanousA high resolution spontaneous 3D dynamic facial expression databaseA high-resolution spontaneous 3D dynamic facial expression database[pdf][s2]SUNY Binghamtonb91f54e1581fbbf60392364323d00a0cd43e493c
casablancaCasablancaContext-aware {CNNs} for person head detectionContext-Aware CNNs for Person Head Detection[pdf][s2]0ceda9dae8b9f322df65ca2ef02caca9758aec6f
cfdCFDThe Chicago face database: A free stimulus set of faces and norming dataThe Chicago face database: A free stimulus set of faces and norming data.[pdf][s2]4df3143922bcdf7db78eb91e6b5359d6ada004d2
cmu_pieCMU PIEThe CMU Pose, Illumination, and Expression DatabaseThe CMU Pose, Illumination, and Expression (PIE) Database[pdf][s2]4d423acc78273b75134e2afd1777ba6d3a398973
columbia_gazeColumbia GazeGaze Locking: Passive Eye Contact Detection for Human–Object InteractionGaze locking: passive eye contact detection for human-object interaction[pdf][s2]Columbia University06f02199690961ba52997cde1527e714d2b3bf8f
d3dfacsD3DFACSA FACS Valid 3D Dynamic Action Unit database with Applications to 3D Dynamic Morphable Facial ModellingA FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling[pdf][s2]070de852bc6eb275d7ca3a9cdde8f6be8795d1a3
dartmouth_childrenDartmouth ChildrenThe Dartmouth Database of Children's Faces: Acquisition and validation of a new face stimulus setThe Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set[pdf][s2]4e6ee936eb50dd032f7138702fa39b7c18ee8907
disfaDISFA1DISFA: A Spontaneous Facial Action Intensity Database[pdf][s2]University of Denver5a5f0287484f0d480fed1ce585dbf729586f0edc
feiFEICaptura e Alinhamento de Imagens: Um Banco de Faces BrasileiroA new ranking method for principal components analysis and its application to face image analysis[pdf][s2]8b56e33f33e582f3e473dba573a16b598ed9bcdc
frgcFRGCOverview of the Face Recognition Grand ChallengeOverview of the face recognition grand challenge[pdf][s2]NIST18ae7c9a4bbc832b8b14bc4122070d7939f5e00e
geofacesGeoFacesFACE2GPS: Estimating geographic location from facial featuresExploring the geo-dependence of human face appearance[pdf][s2]2cd7821fcf5fae53a185624f7eeda007434ae037
hda_plusHDA+A Multi-camera video data set for research on High-Definition surveillanceHDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance[pdf][s2]bd88bb2e4f351352d88ee7375af834360e223498
ibm_difIBM Diversity in FacesDiversity in FacesFacial Coding Scheme Reference 1 Craniofacial Distances[pdf][s2]0ab7cff2ccda7269b73ff6efd9d37e1318f7db25
ijb_cIJB-CIARPA Janus Benchmark CIARPA Janus Benchmark - C: Face Dataset and Protocol[pdf][s2]57178b36c21fd7f4529ac6748614bb3374714e91
ilids_mctsi-LIDS Multiple-CameraImagery Library for Intelligent Detection Systems: The i-LIDS User GuideImagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems[pdf][s2]0297448f3ed948e136bb06ceff10eccb34e5bb77
ilids_mcts_vidiLIDS-VIDPerson Re-Identi cation by Video RankingPerson Re-identification by Video Ranking[pdf][s2]98bb029afe2a1239c3fdab517323066f0957b81b
images_of_groupsImages of GroupsUnderstanding Groups of Images of PeopleUnderstanding images of groups of people[pdf][s2]Carnegie Mellon University21d9d0deed16f0ad62a4865e9acf0686f4f15492
lfwLFWLabeled Faces in the Wild: Updates and New Reporting ProceduresLabeled Faces in the Wild : Updates and New Reporting Procedures[pdf][s2]2d3482dcff69c7417c7b933f22de606a0e8e42d4
lfwLFWLabeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained EnvironmentsLabeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments[pdf][s2]370b5757a5379b15e30d619e4d3fb9e8e13f3256
m2vtsdb_extendedxm2vtsdbXM2VTSDB: The Extended M2VTS DatabaseXM2VTSDB : The extended M2VTS database[pdf][s2]b62628ac06bbac998a3ab825324a41a11bc3a988
malfMALFFine-grained Evaluation on Face Detection in the Wild.Fine-grained evaluation on face detection in the wild[pdf][s2]45e616093a92e5f1e61a7c6037d5f637aa8964af
mr2MR2The MR2: A multi-racial mega-resolution database of facial stimuliThe MR2: A multi-racial, mega-resolution database of facial stimuli.[pdf][s2]578d4ad74818086bb64f182f72e2c8bd31e3d426
multi_pieMULTIPIEMulti-PIEThe CMU Pose, Illumination, and Expression (PIE) Database[pdf][s2]4d423acc78273b75134e2afd1777ba6d3a398973
names_and_facesNews DatasetNames and FacesNames and faces in the news[pdf][s2]2fda164863a06a92d3a910b96eef927269aeb730
nova_emotionsNovaemötions DatasetCompetitive affective gamming: Winning with a smileCompetitive affective gaming: winning with a smile[pdf][s2]Universidade NOVA de Lisboa, Caparica, Portugal7f4040b482d16354d5938c1d1b926b544652bf5b
sdu_vidSDU-VIDPerson reidentification by video rankingPerson Re-identification by Video Ranking[pdf][s2]98bb029afe2a1239c3fdab517323066f0957b81b
stanford_droneStanford DroneLearning Social Etiquette: Human Trajectory Prediction In Crowded ScenesSocial LSTM: Human Trajectory Prediction in Crowded Spaces[pdf][s2]570f37ed63142312e6ccdf00ecc376341ec72b9f
stickmen_buffyBuffy StickmenLearning to Parse Images of Articulated ObjectsLearning to parse images of articulated bodies[pdf][s2]6dd0597f8513dc100cd0bc1b493768cde45098a9
stickmen_pascalStickmen PASCALClustered Pose and Nonlinear Appearance Models for Human Pose EstimationLearning to parse images of articulated bodies[pdf][s2]6dd0597f8513dc100cd0bc1b493768cde45098a9
stickmen_pascalStickmen PASCALLearning to Parse Images of Articulated ObjectsLearning to parse images of articulated bodies[pdf][s2]6dd0597f8513dc100cd0bc1b493768cde45098a9
tiny_images#N/A80 million tiny images: a large dataset for non-parametric object and scene recognition80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition[pdf][s2]31b58ced31f22eab10bd3ee2d9174e7c14c27c01
umd_facesUMDThe Do's and Don'ts for CNN-based Face VerificationThe Do’s and Don’ts for CNN-Based Face Verification[pdf][s2]71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6
voxceleb2VoxCeleb2VoxCeleb2: Deep Speaker RecognitionVoxCeleb2: Deep Speaker Recognition.[pdf][s2]8875ae233bc074f5cd6c4ebba447b536a7e847a5
who_goes_thereWGTWho Goes There? Approaches to Mapping Facial Appearance DiversityWho goes there?: approaches to mapping facial appearance diversity[pdf][s2]University of Kentucky9b9bf5e623cb8af7407d2d2d857bc3f1b531c182
wlfdbWLFDBWLFDB: Weakly Labeled Face DatabasesWLFDB : Weakly Labeled Face Databases[pdf][s2]5ad4e9f947c1653c247d418f05dad758a3f9277b