Paper Titles that do not match

keynameour titlefound titleaddresss2 id
10k_US_adult_faces10K US Adult FacesThe intrinsic memorability of face imagesThe intrinsic memorability of face photographs.[pdf][s2]8b2dd5c61b23ead5ae5508bb8ce808b5ea266730
3dddb_unconstrained3D DynamicA 3D Dynamic Database for Unconstrained Face RecognitionLabeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments[pdf][s2]370b5757a5379b15e30d619e4d3fb9e8e13f3256
afadAFADOrdinal Regression with a Multiple Output CNN for Age EstimationOrdinal Regression with Multiple Output CNN for Age Estimation[pdf][s2]6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c
afew_vaAFEW-VAAFEW-VA database for valence and arousal estimation in-the-wildCollecting Large, Richly Annotated Facial-Expression Databases from Movies[pdf][s2]b1f4423c227fa37b9680787be38857069247a307
affectnetAffectNetAffectNet: A New Database for Facial Expression, Valence, and Arousal Computation in the WildSkybiometry and AffectNet on Facial Emotion Recognition Using Supervised Machine Learning Algorithms[pdf][s2]f152b6ee251cca940dd853c54e6a7b78fbc6b235
afwAFWFace detection, pose estimation and landmark localization in the wildFace detection, pose estimation, and landmark localization in the wild[pdf][s2]0e986f51fe45b00633de9fd0c94d082d2be51406
alert_airportALERT AirportA Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and DatasetsA Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets.[pdf][s2]6403117f9c005ae81f1e8e6d1302f4a045e3d99d
am_fedAM-FEDAffectiva MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected “In the Wild”Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"[pdf][s2]47aeb3b82f54b5ae8142b4bdda7b614433e69b9a
ar_facedbAR FaceThe AR Face DatabaseLabeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments[pdf][s2]370b5757a5379b15e30d619e4d3fb9e8e13f3256
bjut_3dBJUT-3DThe BJUT-3D Large-Scale Chinese Face DatabaseA novel face recognition method based on 3D face model[pdf][s2]1ed1a49534ad8dd00f81939449f6389cfbc25321
bp4d_spontanousBP4D-SpontanousA high resolution spontaneous 3D dynamic facial expression databaseA high-resolution spontaneous 3D dynamic facial expression database[pdf][s2]b91f54e1581fbbf60392364323d00a0cd43e493c
brainwashBrainwashBrainwash datasetBrainwash: A Data System for Feature Engineering[pdf][s2]214c966d1f9c2a4b66f4535d9a0d4078e63a5867
caltech_pedestriansCaltech PedestriansPedestrian Detection: A BenchmarkPedestrian Detection: An Evaluation of the State of the Art[pdf][s2]f72f6a45ee240cc99296a287ff725aaa7e7ebb35
camelCAMELCAMEL Dataset for Visual and Thermal Infrared Multiple Object Detection and TrackingApplication of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis[pdf][s2]5801690199c1917fa58c35c3dead177c0b8f9f2d
casablancaCasablancaContext-aware {CNNs} for person head detectionContext-Aware CNNs for Person Head Detection[pdf][s2]0ceda9dae8b9f322df65ca2ef02caca9758aec6f
celeba_plusCelebFaces+Deep Learning Face Representation from Predicting 10,000 ClassesLearning Deep Representation for Imbalanced Classification[pdf][s2]69a68f9cf874c69e2232f47808016c2736b90c35
cfdCFDThe Chicago face database: A free stimulus set of faces and norming dataThe Chicago face database: A free stimulus set of faces and norming data.[pdf][s2]4df3143922bcdf7db78eb91e6b5359d6ada004d2
cityscapesCityscapesThe Cityscapes DatasetThe Cityscapes Dataset for Semantic Urban Scene Understanding[pdf][s2]32cde90437ab5a70cf003ea36f66f2de0e24b3ab
cmu_pieCMU PIEThe CMU Pose, Illumination, and Expression DatabaseThe CMU Pose, Illumination, and Expression (PIE) Database[pdf][s2]4d423acc78273b75134e2afd1777ba6d3a398973
cocoCOCOMicrosoft COCO: Common Objects in ContextMicrosoft COCO Captions: Data Collection and Evaluation Server[pdf][s2]696ca58d93f6404fea0fc75c62d1d7b378f47628
columbia_gazeColumbia GazeGaze Locking: Passive Eye Contact Detection for Human–Object InteractionA 3D Morphable Eye Region Model for Gaze Estimation[pdf][s2]c34532fe6bfbd1e6df477c9ffdbb043b77e7804d
cvc_01_barcelonaCVC-01Adaptive Image Sampling and Windows Classification for On-board Pedestrian DetectionAdaptive Image Sampling and Windows Classification for On – board Pedestrian Detection[pdf][s2]57fe081950f21ca03b5b375ae3e84b399c015861
d3dfacsD3DFACSA FACS Valid 3D Dynamic Action Unit database with Applications to 3D Dynamic Morphable Facial ModellingA FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling[pdf][s2]070de852bc6eb275d7ca3a9cdde8f6be8795d1a3
dartmouth_childrenDartmouth ChildrenThe Dartmouth Database of Children's Faces: Acquisition and validation of a new face stimulus setThe Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set[pdf][s2]4e6ee936eb50dd032f7138702fa39b7c18ee8907
deep_fashionDeepFashionDeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich AnnotationsFashion Landmark Detection in the Wild[pdf][s2]4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7
disfaDISFADISFA: A Spontaneous Facial Action Intensity DatabaseExtended DISFA Dataset: Investigating Posed and Spontaneous Facial Expressions[pdf][s2]a5acda0e8c0937bfed013e6382da127103e41395
expwExpWLearning Social Relation Traits from Face ImagesFrom Facial Expression Recognition to Interpersonal Relation Prediction[pdf][s2]22f656d0f8426c84a33a267977f511f127bfd7f3
face_research_labFace Research Lab LondonFace Research Lab London Set. figshareAnxiety promotes memory for mood-congruent faces but does not alter loss aversion.[pdf][s2]c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8
face_tracerFaceTracerFaceTracer: A Search Engine for Large Collections of Images with FacesFace swapping: automatically replacing faces in photographs[pdf][s2]670637d0303a863c1548d5b19f705860a23e285c
fddbFDDBFDDB: A Benchmark for Face Detection in Unconstrained SettingsA Benchmark for Face Detection in Unconstrained Settings[pdf][s2]75da1df4ed319926c544eefe17ec8d720feef8c0
feiFEICaptura e Alinhamento de Imagens: Um Banco de Faces BrasileiroGeneralização cartográfica automatizada para um banco de dados cadastral[pdf][s2]b6b1b0632eb9d4ab1427278f5e5c46f97753c73d
fiw_300300-W300 faces In-the-wild challenge: Database and resultsA Semi-automatic Methodology for Facial Landmark Annotation[pdf][s2]013909077ad843eb6df7a3e8e290cfd5575999d2
fiw_300300-W300 Faces in-the-Wild Challenge: The first facial landmark localization ChallengeA Semi-automatic Methodology for Facial Landmark Annotation[pdf][s2]013909077ad843eb6df7a3e8e290cfd5575999d2
frav3dFRAV3DMULTIMODAL 2D, 2.5D & 3D FACE VERIFICATION2D and 3D face recognition: A survey[pdf][s2]2f5d44dc3e1b5955942133ff872ebd31716ec604
frgcFRGCOverview of the Face Recognition Grand ChallengeOverview of the face recognition grand challenge[pdf][s2]18ae7c9a4bbc832b8b14bc4122070d7939f5e00e
gallagherGallagherClothing Cosegmentation for Recognizing PeopleClothing Cosegmentation for Shopping Images With Cluttered Background[pdf][s2]6dbe8e5121c534339d6e41f8683e85f87e6abf81
gavab_dbGavabGavabDB: a 3D face databaseExpression invariant 3D face recognition with a Morphable Model[pdf][s2]42505464808dfb446f521fc6ff2cfeffd4d68ff1
georgia_tech_face_databaseGeorgia Tech FaceMaximum likelihood training of the embedded HMM for face detection and recognitionMAXIMUM LIKELIHOOD TRAINING OF THE EMBEDDED HMM FOR FACE DETECTION AND RECOGNITION Ara V. Ne an and Monson H. Hayes III Center for Signal and Image Processing School of Electrical and Computer Engineering[pdf][s2]3dc3f0b64ef80f573e3a5f96e456e52ee980b877
grazGraz PedestrianGeneric Object Recognition with BoostingObject recognition using segmentation for feature detection[pdf][s2]12ad3b5bbbf407f8e54ea692c07633d1a867c566
grazGraz PedestrianWeak Hypotheses and Boosting for Generic Object Detection and RecognitionObject recognition using segmentation for feature detection[pdf][s2]12ad3b5bbbf407f8e54ea692c07633d1a867c566
hda_plusHDA+The HDA+ data set for research on fully automated re-identification systemsHDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance[pdf][s2]bd88bb2e4f351352d88ee7375af834360e223498
hda_plusHDA+A Multi-camera video data set for research on High-Definition surveillanceHDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance[pdf][s2]bd88bb2e4f351352d88ee7375af834360e223498
hi4d_adsipHi4D-ADSIPHi4D-ADSIP 3-D dynamic facial articulation databaseHigh-resolution comprehensive 3-D dynamic database for facial articulation analysis[pdf][s2]24830e3979d4ed01b9fd0feebf4a8fd22e0c35fd
hrt_transgenderHRT TransgenderIs the Eye Region More Reliable Than the Face? A Preliminary Study of Face-based Recognition on a Transgender DatasetFace recognition: A literature survey[pdf][s2]28312c3a47c1be3a67365700744d3d6665b86f22
hrt_transgenderHRT TransgenderInvestigating the Periocular-Based Face Recognition Across Gender TransformationFace recognition: A literature survey[pdf][s2]28312c3a47c1be3a67365700744d3d6665b86f22
hrt_transgenderHRT TransgenderFace recognition across gender transformation using SVM ClassifierFace recognition: A literature survey[pdf][s2]28312c3a47c1be3a67365700744d3d6665b86f22
ifadIFADIndian Face Age Database: A Database for Face Recognition with Age VariationIndian Face Age Database : A Database for Face Recognition with Age Variation[pdf][s2]55c40cbcf49a0225e72d911d762c27bb1c2d14aa
ifdbIFDBIranian Face Database with age, pose and expressionIranian Face Database and Evaluation with a New Detection Algorithm[pdf][s2]066d71fcd997033dce4ca58df924397dfe0b5fd1
ijb_cIJB-CIARPA Janus Benchmark CIARPA Janus Benchmark - C: Face Dataset and Protocol[pdf][s2]57178b36c21fd7f4529ac6748614bb3374714e91
ilids_mctsImagery Library for Intelligent Detection Systems: The i-LIDS User GuideImagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems[pdf][s2]0297448f3ed948e136bb06ceff10eccb34e5bb77
ilids_vid_reidiLIDS-VIDPerson Re-Identi cation by Video RankingPerson Re-identification by Exploiting Spatio-Temporal Cues and Multi-view Metric Learning[pdf][s2]99eb4cea0d9bc9fe777a5c5172f8638a37a7f262
images_of_groupsImages of GroupsUnderstanding Groups of Images of PeopleUnderstanding images of groups of people[pdf][s2]21d9d0deed16f0ad62a4865e9acf0686f4f15492
imm_faceIMM Face DatasetThe IMM Face Database - An Annotated Dataset of 240 Face ImagesAnnotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization[pdf][s2]a74251efa970b92925b89eeef50a5e37d9281ad0
jiku_mobileJiku Mobile Video DatasetThe Jiku Mobile Video DatasetA Synchronization Ground Truth for the Jiku Mobile Video Dataset[pdf][s2]ad62c6e17bc39b4dec20d32f6ac667ae42d2c118
kdefKDEFThe Karolinska Directed Emotional Faces – KDEFGaze fixation and the neural circuitry of face processing in autism[pdf][s2]93884e46c49f7ae1c7c34046fbc28882f2bd6341
kin_faceUB KinFaceGenealogical Face Recognition based on UB KinFace DatabaseUnderstanding Kin Relationships in a Photo[pdf][s2]08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7
kin_faceUB KinFaceKinship Verification through Transfer LearningUnderstanding Kin Relationships in a Photo[pdf][s2]08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7
kittiKITTIVision meets Robotics: The KITTI DatasetThe Role of Machine Vision for Intelligent Vehicles[pdf][s2]35ba4ebfd017a56b51e967105af9ae273c9b0178
lfwLFWLabeled Faces in the Wild: A SurveyLabeled Faces in the Wild : A Survey[pdf][s2]7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22
lfwLFWLabeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained EnvironmentsLabeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments[pdf][s2]370b5757a5379b15e30d619e4d3fb9e8e13f3256
lfwLFWLabeled Faces in the Wild: Updates and New Reporting ProceduresLabeled Faces in the Wild : Updates and New Reporting Procedures[pdf][s2]2d3482dcff69c7417c7b933f22de606a0e8e42d4
lfw_aLFW-aEffective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background StatisticsEffective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics[pdf][s2]133f01aec1534604d184d56de866a4bd531dac87
m2vtsm2vtsThe M2VTS Multimodal Face Database (Release 1.00)The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations[pdf][s2]2485c98aa44131d1a2f7d1355b1e372f2bb148ad
m2vtsdb_extendedxm2vtsdbXM2VTSDB: The Extended M2VTS DatabaseLabeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments[pdf][s2]370b5757a5379b15e30d619e4d3fb9e8e13f3256
maflMAFLFacial Landmark Detection by Deep Multi-task LearningLearning Deep Representation for Face Alignment with Auxiliary Attributes[pdf][s2]a0fd85b3400c7b3e11122f44dc5870ae2de9009a
malfMALFFine-grained Evaluation on Face Detection in the Wild.Fine-grained evaluation on face detection in the wild[pdf][s2]45e616093a92e5f1e61a7c6037d5f637aa8964af
mcgillMcGill Real WorldHierarchical Temporal Graphical Model for Head Pose Estimation and Subsequent Attribute Classification in Real-World VideosRobust semi-automatic head pose labeling for real-world face video sequences[pdf][s2]c570d1247e337f91e555c3be0e8c8a5aba539d9f
motMOTEvaluating Multiple Object Tracking Performance: The CLEAR MOT MetricsLearning to associate: HybridBoosted multi-target tracker for crowded scene[pdf][s2]5981e6479c3fd4e31644db35d236bfb84ae46514
motMOTPerformance Measures and a Data Set for Multi-Target, Multi-Camera TrackingLearning to associate: HybridBoosted multi-target tracker for crowded scene[pdf][s2]5981e6479c3fd4e31644db35d236bfb84ae46514
mr2MR2The MR2: A multi-racial mega-resolution database of facial stimuliThe MR2: A multi-racial, mega-resolution database of facial stimuli.[pdf][s2]578d4ad74818086bb64f182f72e2c8bd31e3d426
mtflMTFLFacial Landmark Detection by Deep Multi-task LearningLearning Deep Representation for Face Alignment with Auxiliary Attributes[pdf][s2]a0fd85b3400c7b3e11122f44dc5870ae2de9009a
muctMUCTThe MUCT Landmarked Face DatabaseAnnotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization[pdf][s2]a74251efa970b92925b89eeef50a5e37d9281ad0
multi_pieMULTIPIEMulti-PIEScheduling heterogeneous multi-cores through performance impact estimation (PIE)[pdf][s2]109df0e8e5969ddf01e073143e83599228a1163f
names_and_faces_newsNews DatasetNames and FacesNames and faces in the news[pdf][s2]2fda164863a06a92d3a910b96eef927269aeb730
nova_emotionsNovaemötions DatasetCrowdsourcing facial expressions for affective-interactionCompetitive affective gaming: winning with a smile[pdf][s2]7f4040b482d16354d5938c1d1b926b544652bf5b
nova_emotionsNovaemötions DatasetCompetitive affective gamming: Winning with a smileCompetitive affective gaming: winning with a smile[pdf][s2]7f4040b482d16354d5938c1d1b926b544652bf5b
pilot_parliamentPPBGender Shades: Intersectional Accuracy Disparities in Commercial Gender Classi cationSummary of Research on Informant Accuracy in Network Data, 11 and on the Reverse Small World Problem[pdf][s2]fb82681ac5d3487bd8e52dbb3d1fa220eeac855e
put_facePut FaceThe PUT face databaseLabeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments[pdf][s2]370b5757a5379b15e30d619e4d3fb9e8e13f3256
qmul_gridGRIDMulti-Camera Activity Correlation AnalysisTime-Delayed Correlation Analysis for Multi-Camera Activity Understanding[pdf][s2]2edb87494278ad11641b6cf7a3f8996de12b8e14
scfaceSCfaceSCface – surveillance cameras face databaseLarge Variability Surveillance Camera Face Database[pdf][s2]f3b84a03985de3890b400b68e2a92c0a00afd9d0
sdu_vidSDU-VIDA Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-IdentificationPerson Re-identification by Video Ranking[pdf][s2]98bb029afe2a1239c3fdab517323066f0957b81b
sdu_vidSDU-VIDLocal descriptors encoded by Fisher vectors for person re-identificationPerson Re-identification by Video Ranking[pdf][s2]98bb029afe2a1239c3fdab517323066f0957b81b
sdu_vidSDU-VIDPerson reidentification by video rankingPerson Re-identification by Video Ranking[pdf][s2]98bb029afe2a1239c3fdab517323066f0957b81b
sheffieldSheffield FaceFace Recognition: From Theory to ApplicationsFace Description with Local Binary Patterns: Application to Face Recognition[pdf][s2]3607afdb204de9a5a9300ae98aa4635d9effcda2
social_relationSocial RelationFrom Facial Expression Recognition to Interpersonal Relation PredictionLearning Social Relation Traits from Face Images[pdf][s2]2a171f8d14b6b8735001a11c217af9587d095848
stanford_droneStanford DroneLearning Social Etiquette: Human Trajectory Prediction In Crowded ScenesLearning to Predict Human Behavior in Crowded Scenes[pdf][s2]c9bda86e23cab9e4f15ea0c4cbb6cc02b9dfb709
stickmen_buffyBuffy StickmenLearning to Parse Images of Articulated ObjectsClustered Pose and Nonlinear Appearance Models for Human Pose Estimation[pdf][s2]4b1d23d17476fcf78f4cbadf69fb130b1aa627c0
stickmen_pascalStickmen PASCALClustered Pose and Nonlinear Appearance Models for Human Pose EstimationLearning to parse images of articulated bodies[pdf][s2]6dd0597f8513dc100cd0bc1b493768cde45098a9
stickmen_pascalStickmen PASCALLearning to Parse Images of Articulated ObjectsLearning to parse images of articulated bodies[pdf][s2]6dd0597f8513dc100cd0bc1b493768cde45098a9
sun_attributesSUNThe SUN Attribute Database: Beyond Categories for Deeper Scene UnderstandingSUN attribute database: Discovering, annotating, and recognizing scene attributes[pdf][s2]833fa04463d90aab4a9fe2870d480f0b40df446e
sun_attributesSUNSUN Attribute Database: Discovering, Annotating, and Recognizing Scene AttributesSUN attribute database: Discovering, annotating, and recognizing scene attributes[pdf][s2]833fa04463d90aab4a9fe2870d480f0b40df446e
texas_3dfrdTexas 3DFRDTexas 3D Face Recognition DatabaseAnthropometric 3D Face Recognition[pdf][s2]2ce2560cf59db59ce313bbeb004e8ce55c5ce928
tiny_imagesTiny Images80 million tiny images: a large dataset for non-parametric object and scene recognition80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition[pdf][s2]31b58ced31f22eab10bd3ee2d9174e7c14c27c01
umd_facesUMDThe Do's and Don'ts for CNN-based Face VerificationThe Do’s and Don’ts for CNN-Based Face Verification[pdf][s2]71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6
viperVIPeREvaluating Appearance Models for Recognition, Reacquisition, and TrackingEvaluating Appearance Models for Recognition , Reacquisition , and Tracking[pdf][s2]6273b3491e94ea4dd1ce42b791d77bdc96ee73a8
vocVOCThe PASCAL Visual Object Classes (VOC) ChallengeThe Pascal Visual Object Classes Challenge: A Retrospective[pdf][s2]abe9f3b91fd26fa1b50cd685c0d20debfb372f73
who_goes_thereWGTWho Goes There? Approaches to Mapping Facial Appearance DiversityWho goes there?: approaches to mapping facial appearance diversity[pdf][s2]9b9bf5e623cb8af7407d2d2d857bc3f1b531c182
wildtrackWildTrackWILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian DetectionWILDTRACK : A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection[pdf][s2]77c81c13a110a341c140995bedb98101b9e84f7f
yale_facesYaleFacesAcquiring Linear Subspaces for Face Recognition under Variable LightingFrom Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose[pdf][s2]18c72175ddbb7d5956d180b65a96005c100f6014
yfcc_100mYFCC100MYFCC100M: The New Data in Multimedia ResearchThe New Data and New Challenges in Multimedia Research[pdf][s2]a6e695ddd07aad719001c0fc1129328452385949
youtube_makeupYMUCan Facial Cosmetics Affect the Matching Accuracy of Face Recognition Systems?Automatic facial makeup detection with application in face recognition[pdf][s2]fcc6fe6007c322641796cb8792718641856a22a7