Situation recognition: Visual semantic role labeling for image understanding|http://scholar.google.com/https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Yatskar_Situation_Recognition_Visual_CVPR_2016_paper.html|2016|53|9|14769542088507071062|None|http://scholar.google.com/scholar?cites=14769542088507071062&as_sdt=2005&sciodt=0,5&hl=en|http://scholar.google.com/scholar?cluster=14769542088507071062&hl=en&as_sdt=0,5|None|This paper introduces situation recognition, the problem of producing a concise summary of the situation an image depicts including:(1) the main activity (eg, clipping),(2) the participating actors, objects, substances, and locations (eg, man, shears, sheep, wool, and field) and most importantly (3) the roles these participants play in the activity (eg, the man is clipping, the shears are his tool, the wool is being clipped from the sheep, and the clipping is in a field). We use FrameNet, a verb and role lexicon developed by linguists, to define a …