import os import sys import csv import subprocess import time import random import re import json import click from s2 import SemanticScholarAPI from util import * s2 = SemanticScholarAPI() @click.command() @click.option('--fn', '-i', default='db_paper_pdf.csv', help='Filename of CSV (id, url,)') def fetch_pdfs(fn): lines = read_csv(fn, keys=False) for line in lines: paper_id, url = line fetch_pdf(paper_id, url) print("{} papers processed".format(len(lines))) def fetch_pdf(paper_id, url): os.makedirs(make_pdf_path(paper_id), exist_ok=True) pdf_fn = make_pdf_fn(paper_id) txt_fn = make_txt_fn(paper_id) if os.path.exists(pdf_fn) or os.path.exists(txt_fn): # return read_json(pdf_fn) return size = s2.fetch_file(url, pdf_fn) if size is None: print("{} empty?".format(paper_id)) time.sleep(random.randint(5, 10)) return None print("{} {} kb".format(paper_id, int(size / 1024))) time.sleep(random.randint(5, 10)) return # return paper def make_pdf_path(paper_id): return './datasets/s2/pdf/{}/{}'.format(paper_id[0:2], paper_id) def make_pdf_fn(paper_id): return './datasets/s2/pdf/{}/{}/paper.pdf'.format(paper_id[0:2], paper_id) def make_txt_fn(paper_id): return './datasets/s2/pdf/{}/{}/paper.txt'.format(paper_id[0:2], paper_id) if __name__ == '__main__': fetch_pdfs()