# VGG Face 2 Models - use the VGG `SE-ResNet-50-256D` .caffemodel - mean values and size in prototxt - training used faces detected with MTCNN using 0.3 scale bbox expansion, thresholded at borders - for megapixels, we are using the opencv dnn face detector which has - variation for using OpenCV DNN face detector on test set yields | Detector | Center | Width | Height | |:-:|:-:|:-:|:-:| | OpenCV DNN | 0.0271% | 3.440% | 3.306% | | MTCNN PyTorch | - | - | - | | MTCNN TensorFlow | - | - | - | | MTCNN Caffe | - | - | - | ### VGG Face 2 TAR@FAR - From - http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/ - TAR: True Acceptance Rate, FAR: False Acceptance Rate | Architecture | Feat dim | Pretrain | TAR@FAR = 0.001 | TAR@FAR = 0.01 | Model Link | |:-:|:-:|:-:|:-:|:-:|:-:| | ResNet-50 | 2048 | N | 0.878 | 0.938 | [Caffe](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/caffe/resnet50_scratch_caffe.tar.gz), [MatConvNet](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/matconvnet/resnet50_scratch_mat.tar.gz), [TF], [PyTorch](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/pytorch/resnet50_scratch_pytorch.tar.gz) | | ResNet-50 | 2048 | Y | 0.891 | 0.947 | [Caffe](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/caffe/resnet50_ft_caffe.tar.gz), [MatConvNet](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/matconvnet/resnet50_ft_mat.tar.gz), [TF], [PyTorch](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/pytorch/resnet50_ft_pytorch.tar.gz) | | SE-ResNet-50 | 2048 | N | 0.888 | 0.949 | [Caffe](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/caffe/senet50_scratch_caffe.tar.gz), [MatConvNet](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/matconvnet/senet50_scratch_mat.tar.gz), [TF], [PyTorch](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/pytorch/senet50_scratch_pytorch.tar.gz)| | SE-ResNet-50 | 2048 | Y | 0.908 | 0.956 | [Caffe](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/caffe/senet50_ft_caffe.tar.gz), [MatConvNet](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/matconvnet/senet50_ft_mat.tar.gz), [TF], [PyTorch](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/pytorch/senet50_ft_pytorch.tar.gz)| | ResNet-50-256D | 256 | Y | 0.898 | 0.956 | [Caffe](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/caffe/resnet50_256_caffe.tar.gz), [MatConvNet](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/matconvnet/resnet50_256_mat.tar.gz), [TF], [PyTorch](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/pytorch/resnet50_256_pytorch.tar.gz) | | ResNet-50-128D | 128 | Y | 0.904 | 0.956 | [Caffe](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/caffe/resnet50_128_caffe.tar.gz), [MatConvNet](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/matconvnet/resnet50_128_mat.tar.gz), [TF], [PyTorch](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/pytorch/resnet50_128_pytorch.tar.gz) | | SE-ResNet-50-256D| 256 | Y | 0.912 | 0.965 | [Caffe](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/caffe/senet50_256_caffe.tar.gz), [MatConvNet](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/matconvnet/senet50_256_mat.tar.gz), [TF], [PyTorch](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/pytorch/senet50_256_pytorch.tar.gz)| | SE-ResNet-50-128D| 128 | Y | 0.910 | 0.959 | [Caffe](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/caffe/senet50_128_caffe.tar.gz), [MatConvNet](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/matconvnet/senet50_128_mat.tar.gz), [TF], [PyTorch](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/models/pytorch/senet50_128_pytorch.tar.gz) |