{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 3D Face Plot\n", "\n", "Process faces for Georgetown Color of Surveillance" ] }, { "cell_type": "code", "execution_count": 128, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The autoreload extension is already loaded. To reload it, use:\n", " %reload_ext autoreload\n" ] } ], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "import os\n", "from os.path import join\n", "import sys\n", "import time\n", "import cv2 as cv\n", "import numpy as np\n", "import imutils\n", "import matplotlib.animation\n", "%matplotlib notebook\n", "from glob import glob\n", "from matplotlib import cbook\n", "from matplotlib import cm\n", "from matplotlib.colors import LightSource\n", "from random import randint\n", "sys.path.append('/megapixels/3rdparty/face-alignment')\n", "import face_alignment\n", "import numpy as np\n", "from mpl_toolkits.mplot3d import Axes3D\n", "import matplotlib.pyplot as plt\n", "import mpl_toolkits.mplot3d.axes3d as p3\n", "from matplotlib import animation\n", "import random\n", "from skimage import io\n", "from tqdm import tqdm_notebook as tqdm\n", "from IPython.display import clear_output\n", "from pathlib import Path\n" ] }, { "cell_type": "code", "execution_count": 129, "metadata": {}, "outputs": [], "source": [ "# init 3d face\n", "# Run the 3D face alignment on a test image, without CUDA.\n", "fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, \n", " enable_cuda=True, flip_input=True)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "100\n" ] } ], "source": [ "data_bodega = '/megapixels/data_bodega/'\n", "fp = join(data_bodega,'images/senators/*.jpg')\n", "face_files = glob(fp,recursive=True)\n", "print(len(face_files))" ] }, { "cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [], "source": [ "\n", "def ensure_dir(d):\n", " \"\"\"Create directory if not exist\n", " :param d: path to directory\n", " \"\"\"\n", " if not os.path.exists(d):\n", " os.makedirs(d, exist_ok=True)" ] }, { "cell_type": "code", "execution_count": 109, "metadata": {}, "outputs": [], "source": [ "def generate_3d_face(fpath,output_dir,anim=False,ext='png'):\n", " # load image\n", " im = io.imread(fpath)\n", " \n", " # generate 3d predictions\n", " preds = fa.get_landmarks(im)\n", " if preds is None:\n", " return\n", " preds = preds[-1]\n", " \n", " # plot style\n", " num_frames = 60\n", " lw = 2 # line weight\n", " bg_color = '#%02x%02x%02x' % (60,59,110)\n", " mark_clr = '#%02x%02x%02x' % (255,255,255)\n", " mark_clr = '#%02x%02x%02x' % (0,255,0)\n", " #mark_type='$\\star$'\n", " #mark_size = 20\n", " mark_type='o'\n", " mark_size = 10\n", " rh = '#ffffff'\n", " dpi = 72\n", " figsize = (16,16)\n", " \n", " # center x,y,z\n", " xmm = (np.min(preds[:,0]),np.max(preds[:,0]))\n", " ymm = (np.min(preds[:,1]),np.max(preds[:,1]))\n", " zmm = (np.min(preds[:,2]),np.max(preds[:,2]))\n", " \n", " preds_orig = preds.copy()\n", " xmm_sc = (1.2*np.min(preds[:,0]),1.2*np.max(preds_orig[:,0]))\n", " xmm = (np.min(preds_orig[:,0]),np.max(preds_orig[:,0]))\n", " ymm = (np.min(preds_orig[:,1]),np.max(preds_orig[:,1]))\n", " zmm = (np.min(preds_orig[:,2]),np.max(preds_orig[:,2]))\n", " \n", " # swap the y and z components to improve 3d rotation angles\n", " preds = np.zeros_like(preds_orig).astype(np.uint8)\n", " for i,p in enumerate(preds_orig):\n", " x,y,z = p\n", " #preds[i] = np.array([x - xmm[0], y - ymm[0], z - zmm[0]]) # ?\n", " preds[i] = np.array([x - xmm[0], z - zmm[0], y - ymm[0]])\n", " \n", " # Create plot\n", " fig = plt.figure(figsize=figsize,dpi=dpi)\n", " fig.tight_layout()\n", " ax = fig.add_subplot(111, projection='3d')\n", " ax.set_facecolor(bg_color) # background color\n", " \n", " preds_plot = np.zeros_like(preds)\n", " for i,p in enumerate(preds):\n", " x,y,z = p\n", " preds_plot[i] = np.array([x,y,z])\n", "\n", " \n", " # scatter plot the dots\n", " ax.plot3D(preds_plot[:17,0]*1.2,preds_plot[:17,1], preds_plot[:17,2],\n", " marker=mark_type,markersize=mark_size,color=mark_clr,linewidth=lw)\n", " ax.plot3D(preds_plot[17:22,0]*1.2,preds_plot[17:22,1],preds_plot[17:22,2],\n", " marker=mark_type,markersize=mark_size,color=mark_clr,linewidth=lw)\n", " ax.plot3D(preds_plot[22:27,0]*1.2,preds_plot[22:27,1],preds_plot[22:27,2], \n", " marker=mark_type,markersize=mark_size,color=mark_clr,linewidth=lw)\n", " ax.plot3D(preds_plot[27:31,0]*1.2,preds_plot[27:31,1],preds_plot[27:31,2],\n", " marker=mark_type,markersize=mark_size,color=mark_clr,linewidth=lw)\n", " ax.plot3D(preds_plot[31:36,0]*1.2,preds_plot[31:36,1],preds_plot[31:36,2],\n", " marker=mark_type,markersize=mark_size,color=mark_clr,linewidth=lw)\n", " ax.plot3D(preds_plot[36:42,0]*1.2,preds_plot[36:42,1],preds_plot[36:42,2],\n", " marker=mark_type,markersize=mark_size,color=mark_clr,linewidth=lw)\n", " ax.plot3D(preds_plot[42:48,0]*1.2,preds_plot[42:48,1],preds_plot[42:48,2],\n", " marker=mark_type,markersize=mark_size,color=mark_clr,linewidth=lw)\n", " ax.plot3D(preds_plot[48:,0]*1.2,preds_plot[48:,1],preds_plot[48:,2],\n", " marker=mark_type,markersize=mark_size,color=mark_clr, linewidth=lw)\n", "\n", " \n", " ax.scatter(preds_plot[:,0]*1.2,preds_plot[:,1],preds_plot[:,2],c=rh, alpha=1.0, s=35, edgecolor=rh)\n", " \n", " # center points\n", " cx = ((xmm[0] - xmm[1]) // 2) + xmm[1]\n", " cy = ((ymm[1] - ymm[0]) // 2) + ymm[0]\n", " cz = ((zmm[1] - zmm[0]) // 2) + zmm[0]\n", " \n", " # ?\n", " ax.view_init(elev=120., azim=70.)\n", " \n", " ax.set_xticks([])\n", " ax.set_yticks([])\n", " ax.set_zticks([])\n", " ax.set_axis_off()\n", " ax.set_xlabel('x')\n", " ax.set_ylabel('y')\n", " ax.set_zlabel('z')\n", "\n", " \n", " phis = np.linspace(0, 2*np.pi, num_frames)\n", " \n", " if anim:\n", " def update(phi):\n", " ax.view_init(180,phi*180./np.pi)\n", " fname_out = join(output_dir,'{}.gif'.format(Path(fpath).stem))\n", " ani = matplotlib.animation.FuncAnimation(fig, update, frames=phis)\n", " ani.save(fname_out, writer='imagemagick', fps=10)\n", " del ani\n", " else:\n", " for i,phi in enumerate(phis):\n", " # ext (jpg,png,pdf)\n", " person_name = Path(fpath).stem\n", " fname_out = join(output_dir,person_name,'{}.{}'.format(str(i).zfill(4), ext))\n", " ensure_dir(Path(fname_out).parent)\n", " ax.view_init(180,phi*180./np.pi)\n", " fig.savefig(fname_out, transparent=True)" ] }, { "cell_type": "code", "execution_count": 110, "metadata": {}, "outputs": [], "source": [ "output_dir = join(data_bodega,'output','senators_3d_points_frames')" ] }, { "cell_type": "code", "execution_count": 123, "metadata": { "scrolled": false }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('
');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " if (mpl.ratio != 1) {\n", " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", " }\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " fig.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '
');\n", " var titletext = $(\n", " '
');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('
');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var backingStore = this.context.backingStorePixelRatio ||\n", "\tthis.context.webkitBackingStorePixelRatio ||\n", "\tthis.context.mozBackingStorePixelRatio ||\n", "\tthis.context.msBackingStorePixelRatio ||\n", "\tthis.context.oBackingStorePixelRatio ||\n", "\tthis.context.backingStorePixelRatio || 1;\n", "\n", " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", "\n", " var rubberband = $('');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width * mpl.ratio);\n", " canvas.attr('height', height * mpl.ratio);\n", " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('
')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('
');\n", " var button = $('');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "" ] }, "execution_count": 132, "metadata": {}, "output_type": "execute_result" } ], "source": [ "im[100][10] = (255,0,0)\n", "plt.imshow(im)" ] }, { "cell_type": "code", "execution_count": 148, "metadata": {}, "outputs": [], "source": [ "import pickle\n", "from slugify import slugify" ] }, { "cell_type": "code", "execution_count": 149, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on function slugify in module slugify:\n", "\n", "slugify(string)\n", " Slugify a unicode string.\n", " \n", " Example:\n", " \n", " >>> slugify(u\"Héllø Wörld\")\n", " u\"hello-world\"\n", "\n" ] } ], "source": [ "help(slugify)" ] }, { "cell_type": "code", "execution_count": 138, "metadata": {}, "outputs": [], "source": [ "f = '/data_store/datasets/gov/output/senators_obj_04/boozman_john_mesh.pkl'\n", "with open(f, 'rb') as fp:\n", " data = pickle.load(fp)" ] }, { "cell_type": "code", "execution_count": 139, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "colors\n", "width\n", "keypoints\n", "triangles\n", "texture\n", "vertices\n", "uv_coords\n", "save_vertices\n", "position\n", "pose\n", "camera_matrix\n", "height\n" ] } ], "source": [ "for k,v in data.items():\n", " print(k)" ] }, { "cell_type": "code", "execution_count": 147, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[[0.37254902 0.30588235 0.24313725]\n", " [0.44313725 0.53333333 0.59607843]\n", " [0.0627451 0.05882353 0.04313725]\n", " ...\n", " [0.65490196 0.51764706 0.44313725]\n", " [0.60392157 0.4627451 0.36078431]\n", " [0.33333333 0.25882353 0.23529412]]\n", "\n", " [[0.38039216 0.28627451 0.19215686]\n", " [0.43137255 0.53333333 0.59215686]\n", " [0.09803922 0.09411765 0.0745098 ]\n", " ...\n", " [0.38039216 0.31372549 0.25098039]\n", " [0.23921569 0.20784314 0.15686275]\n", " [0.28235294 0.23137255 0.19607843]]\n", "\n", " [[0.32156863 0.25098039 0.16470588]\n", " [0.10196078 0.10588235 0.08235294]\n", " [0.11372549 0.11764706 0.09803922]\n", " ...\n", " [0.23529412 0.19607843 0.16078431]\n", " [0.12156863 0.10980392 0.08235294]\n", " [0.61960784 0.49803922 0.38823529]]\n", "\n", " ...\n", "\n", " [[0.38039216 0.45882353 0.50196078]\n", " [0.35294118 0.43921569 0.49411765]\n", " [0.23529412 0.2627451 0.30196078]\n", " ...\n", " [0.72156863 0.49803922 0.39215686]\n", " [0.10196078 0.10196078 0.13333333]\n", " [0.0627451 0.06666667 0.08235294]]\n", "\n", " [[0. 0. 0. ]\n", " [0.0745098 0.07843137 0.09803922]\n", " [0.07843137 0.0745098 0.09803922]\n", " ...\n", " [0.10588235 0.12156863 0.1254902 ]\n", " [0.10196078 0.10196078 0.13333333]\n", " [0.09803922 0.09411765 0.11372549]]\n", "\n", " [[0. 0. 0. ]\n", " [0.07058824 0.0745098 0.09019608]\n", " [0.06666667 0.07058824 0.08627451]\n", " ...\n", " [0.10588235 0.10196078 0.13333333]\n", " [0.07058824 0.08235294 0.10980392]\n", " [0.07843137 0.09411765 0.12941176]]]\n" ] } ], "source": [ "print(data['texture'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:megapixels]", "language": "python", "name": "conda-env-megapixels-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }