{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Count Images for LFW\n", "\n", "- use sub-directory as `identity_key`" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "%reload_ext autoreload\n", "%autoreload 2\n", "\n", "import os\n", "from os.path import join\n", "from glob import glob\n", "from pathlib import Path\n", "from pprint import pprint\n", "\n", "from tqdm import tqdm_notebook as tqdm\n", "import pandas as pd\n", "import numpy as np\n", "from slugify import slugify\n", "\n", "import sys\n", "sys.path.append('/work/megapixels_dev/megapixels')\n", "from app.utils import file_utils\n", "from app.settings import types, app_cfg\n", "from app.models.data_store import DataStore" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Get image counts" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "opt_dataset = types.Dataset.LFW\n", "opt_data_store = types.DataStore.HDD\n", "data_store = DataStore(opt_data_store, opt_dataset)\n", "# get filepath out\n", "fp_records = data_store.metadata(types.Metadata.FILE_RECORD)\n", "fp_img_counts = data_store.metadata(types.Metadata.IMAGE_COUNT)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "df_records = pd.read_csv(fp_records).set_index('index')\n", "records = df_records.to_dict('records')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# paths\n", "fp_dirs = '/data_store_hdd/datasets/people/lfw/media/original/'\n", "\n", "fp_out = '/data_store_hdd/datasets/people/lfw/metadata/image_counts.csv'\n", "\n", "# glob\n", "dirs = glob(join(fp_dirs,'*'))\n", "\n", "# count images\n", "image_counts = []\n", "\n", "for d in tqdm(dirs):\n", " # get number of images\n", " files = file_utils.glob_multi(d, ['jpg', 'png'], recursive=False)\n", " count = len(files)\n", " name = Path(d).stem\n", " image_counts.append({'identity_key': name, 'count': count})" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "df_counts = pd.DataFrame.from_dict(image_counts)\n", "df_counts.index.name = 'index'\n", "df_counts.to_csv(fp_out)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
countidentity_key
index
014Kim_Clijsters
11William_Rosenberg
22John_Brady
33Juan_Ignacio_Chela
41Floyd_Keith
\n", "
" ], "text/plain": [ " count identity_key\n", "index \n", "0 14 Kim_Clijsters\n", "1 1 William_Rosenberg\n", "2 2 John_Brady\n", "3 3 Juan_Ignacio_Chela\n", "4 1 Floyd_Keith" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_counts.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:megapixels]", "language": "python", "name": "conda-env-megapixels-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }