{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Scratch pad" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from glob import glob\n", "from os.path import join\n", "from pathlib import Path\n", "import random\n", "\n", "import pandas as pd\n", "import cv2 as cv\n", "import numpy as np\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "\n", "import sys\n", "sys.path.append('/work/megapixels_dev/megapixels')\n", "from app.models.bbox import BBox\n", "from app.utils import im_utils, file_utils" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "a= [1]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[-1]" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "fp_filepath = '/data_store_ssd/datasets/people/lfw/metadata/filepath.csv'\n", "df_filepath = pd.read_csv(fp_filepath)" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "image_index = 12467" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "12474\n" ] }, { "data": { "text/plain": [ "index 12851\n", "ext jpg\n", "fn Vladimir_Putin_0029\n", "subdir Vladimir_Putin\n", "Name: 12474, dtype: object" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "image_index += 1\n", "print(image_index)\n", "df_filepath.iloc[image_index]" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": [ "import imutils" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on function build_montages in module imutils.convenience:\n", "\n", "build_montages(image_list, image_shape, montage_shape)\n", " ---------------------------------------------------------------------------------------------\n", " author: Kyle Hounslow\n", " ---------------------------------------------------------------------------------------------\n", " Converts a list of single images into a list of 'montage' images of specified rows and columns.\n", " A new montage image is started once rows and columns of montage image is filled.\n", " Empty space of incomplete montage images are filled with black pixels\n", " ---------------------------------------------------------------------------------------------\n", " :param image_list: python list of input images\n", " :param image_shape: tuple, size each image will be resized to for display (width, height)\n", " :param montage_shape: tuple, shape of image montage (width, height)\n", " :return: list of montage images in numpy array format\n", " ---------------------------------------------------------------------------------------------\n", " \n", " example usage:\n", " \n", " # load single image\n", " img = cv2.imread('lena.jpg')\n", " # duplicate image 25 times\n", " num_imgs = 25\n", " img_list = []\n", " for i in xrange(num_imgs):\n", " img_list.append(img)\n", " # convert image list into a montage of 256x256 images tiled in a 5x5 montage\n", " montages = make_montages_of_images(img_list, (256, 256), (5, 5))\n", " # iterate through montages and display\n", " for montage in montages:\n", " cv2.imshow('montage image', montage)\n", " cv2.waitKey(0)\n", " \n", " ----------------------------------------------------------------------------------------------\n", "\n" ] } ], "source": [ "help(imutils.build_montages)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:megapixels]", "language": "python", "name": "conda-env-megapixels-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }