{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import cv2 as cv\n", "import numpy as np\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import sys\n", "from glob import glob\n", "from os.path import join\n", "from pathlib import Path\n", "sys.path.append('/work/megapixels_dev/megapixels')\n", "from app.models.bbox import BBox\n", "#from app.utils import im_utils\n", "import random" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "dir_ims = '/data_store_ssd/apps/megapixels/datasets/umd_faces/faces/'" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n" ] } ], "source": [ "fp_ims = glob(join(dir_ims, '*.png'))\n", "print(len(fp_ims))" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on function choice in module random:\n", "\n", "choice(self, seq)\n", " Choose a random element from a non-empty sequence.\n", "\n" ] } ], "source": [ "help(random.sample)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1, 8, 0, 6, 3] True\n" ] } ], "source": [ "a = list(range(0,10))\n", "b = random.sample(a, 5)\n", "print(b, len(set(b))==5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from random import randint\n", "imu" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import face_alignment\n", "from skimage import io\n", "\n", "fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, flip_input=False, device='cuda')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fp_im = np.random.choice(fp_ims)\n", "im = io.imread(fp_im)\n", "preds = fa.get_landmarks(im)\n", "print(preds[0])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import json" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(len(preds[0]))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "with open('test.json', 'w') as fp:\n", " json.dump(preds[0].tolist(), fp)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:megapixels]", "language": "python", "name": "conda-env-megapixels-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }