""" """ import click from app.settings import types from app.utils import click_utils from app.settings import app_cfg as cfg color_filters = {'color': 1, 'gray': 2, 'all': 3} @click.command() @click.option('-i', '--input', 'opt_fp_in', default=None, help='Override enum input filename CSV') @click.option('-o', '--output', 'opt_fp_out', default=None, help='Override enum output filename CSV') @click.option('-m', '--media', 'opt_dir_media', default=None, help='Override enum media directory') @click.option('--store', 'opt_data_store', type=cfg.DataStoreVar, default=click_utils.get_default(types.DataStore.HDD), show_default=True, help=click_utils.show_help(types.Dataset)) @click.option('--dataset', 'opt_dataset', type=cfg.DatasetVar, required=True, show_default=True, help=click_utils.show_help(types.Dataset)) @click.option('-d', '--detector', 'opt_detector_type', type=cfg.FaceLandmark3D_68Var, default=click_utils.get_default(types.FaceLandmark3D_68.FACE_ALIGNMENT), help=click_utils.show_help(types.FaceLandmark3D_68)) @click.option('--size', 'opt_size', type=(int, int), default=(300, 300), help='Output image size') @click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), help='Slice list of files') @click.option('-f', '--force', 'opt_force', is_flag=True, help='Force overwrite file') @click.option('-d', '--display', 'opt_display', is_flag=True, help='Display image for debugging') @click.pass_context def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_detector_type, opt_size, opt_slice, opt_force, opt_display): """Generate 3D 68-point landmarks""" import sys import os from os.path import join from pathlib import Path from glob import glob from tqdm import tqdm import numpy as np import cv2 as cv import pandas as pd from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils from app.utils import plot_utils from app.processors import face_landmarks from app.models.data_store import DataStore from app.models.bbox import BBox # -------------------------------------------------------------------------- # init here log = logger_utils.Logger.getLogger() log.warn('not normalizing points') # init filepaths data_store = DataStore(opt_data_store, opt_dataset) # set file output path metadata_type = types.Metadata.FACE_LANDMARK_3D_68 fp_out = data_store.metadata(metadata_type) if opt_fp_out is None else opt_fp_out if not opt_force and Path(fp_out).exists(): log.error('File exists. Use "-f / --force" to overwite') return # init face landmark processors if opt_detector_type == types.FaceLandmark3D_68.FACE_ALIGNMENT: # use FaceAlignment 68 point 3D detector landmark_detector = face_landmarks.FaceAlignment3D_68() else: log.error('{} not yet implemented'.format(opt_detector_type.name)) return log.info(f'Using landmark detector: {opt_detector_type.name}') # ------------------------------------------------------------------------- # load data fp_record = data_store.metadata(types.Metadata.FILE_RECORD) # file_record.csv df_record = pd.read_csv(fp_record).set_index('index') fp_roi = data_store.metadata(types.Metadata.FACE_ROI) # face_roi.csv df_roi = pd.read_csv(fp_roi).set_index('index') if opt_slice: df_roi = df_roi[opt_slice[0]:opt_slice[1]] # slice if you want df_img_groups = df_roi.groupby('record_index') # groups by image index (load once) log.debug('processing {:,} groups'.format(len(df_img_groups))) # store landmarks in list results = [] # iterate groups with file/record index as key for record_index, df_img_group in tqdm(df_img_groups): # acces file record ds_record = df_record.iloc[record_index] # load image fp_im = data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext) im = cv.imread(fp_im) im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) # iterate image group dataframe with roi index as key for roi_index, df_img in df_img_group.iterrows(): # get bbox x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h dim = im_resized.shape[:2][::-1] bbox = BBox.from_xywh(x, y, w, h).to_dim(dim) # get landmark points points = landmark_detector.landmarks(im_resized, bbox) # NB can't really normalize these points, but are normalized against 3D space #points_norm = landmark_detector.normalize(points, dim) # normalized using 200 points_flattenend = landmark_detector.flatten(points) # display to screen if optioned if opt_display: draw_utils.draw_landmarks3D(im_resized, points) draw_utils.draw_bbox(im_resized, bbox) cv.imshow('', im_resized) display_utils.handle_keyboard() #plot_utils.generate_3d_landmark_anim(points, '/home/adam/Downloads/3d.gif') results.append(points_flattenend) # create DataFrame and save to CSV file_utils.mkdirs(fp_out) df = pd.DataFrame.from_dict(results) df.index.name = 'index' df.to_csv(fp_out) # save script file_utils.write_text(' '.join(sys.argv), '{}.sh'.format(fp_out))