""" Crop images to prepare for training """ import click from app.settings import types from app.utils import click_utils from app.settings import app_cfg as cfg @click.command() @click.option('-i', '--input', 'opt_fp_in', required=True, help='Input directory') @click.option('-r', '--records', 'opt_fp_records', required=True, help='Input directory') @click.option('-o', '--output', 'opt_fp_out', required=True, help='Output JSON') @click.option('-f', '--force', 'opt_force', is_flag=True, help='Force overwrite file') @click.pass_context def cli(ctx, opt_fp_in, opt_fp_records, opt_fp_out,opt_force): """Merges UUID with face vectors""" import sys import os from os.path import join from pathlib import Path from tqdm import tqdm import pandas as pd from app.utils import logger_utils, file_utils # ------------------------------------------------- # init here log = logger_utils.Logger.getLogger() df_vecs = pd.read_csv(opt_fp_in) df_records = pd.read_csv(opt_fp_records) nrows = len(df_vecs) # face vecs uuid_vecs = {} for roi_idx, row in tqdm(df_vecs.iterrows(), total=nrows): # make image path record_id = int(row['id']) uuid = df_records.iloc[record_id]['uuid'] vec = row['vec'].split(',') uuid_vecs[uuid] = vec # save as JSON file_utils.write_json(uuid_vecs, opt_fp_out)