""" Converts ROIs to face vector """ import click from app.settings import types from app.utils import click_utils from app.settings import app_cfg as cfg @click.command() @click.option('-o', '--output', 'opt_fp_out', default=None, help='Override enum output filename CSV') @click.option('-m', '--media', 'opt_dir_media', default=None, help='Override enum media directory') @click.option('--data_store', 'opt_data_store', type=cfg.DataStoreVar, default=click_utils.get_default(types.DataStore.SSD), show_default=True, help=click_utils.show_help(types.Dataset)) @click.option('--dataset', 'opt_dataset', type=cfg.DatasetVar, required=True, show_default=True, help=click_utils.show_help(types.Dataset)) @click.option('--size', 'opt_size', type=(int, int), default=(300, 300), help='Output image size') @click.option('-j', '--jitters', 'opt_jitters', default=cfg.DLIB_FACEREC_JITTERS, help='Number of jitters') @click.option('-p', '--padding', 'opt_padding', default=cfg.DLIB_FACEREC_PADDING, help='Percentage padding') @click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), help='Slice list of files') @click.option('-f', '--force', 'opt_force', is_flag=True, help='Force overwrite file') @click.option('-g', '--gpu', 'opt_gpu', default=0, help='GPU index') @click.pass_context def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size, opt_slice, opt_force, opt_gpu, opt_jitters, opt_padding): """Converts face ROIs to vectors""" import sys import os from os.path import join from pathlib import Path from glob import glob from tqdm import tqdm import numpy as np import dlib # must keep a local reference for dlib import cv2 as cv import pandas as pd from app.models.bbox import BBox from app.models.data_store import DataStore from app.utils import logger_utils, file_utils, im_utils from app.processors import face_recognition # ------------------------------------------------- # init here log = logger_utils.Logger.getLogger() # set data_store data_store = DataStore(opt_data_store, opt_dataset) # get filepath out fp_out = data_store.metadata(types.Metadata.FACE_VECTOR) if opt_fp_out is None else opt_fp_out if not opt_force and Path(fp_out).exists(): log.error('File exists. Use "-f / --force" to overwite') return # init face processors facerec = face_recognition.RecognitionDLIB() # load data fp_record = data_store.metadata(types.Metadata.FILE_RECORD) df_record = pd.read_csv(fp_record).set_index('index') fp_roi = data_store.metadata(types.Metadata.FACE_ROI) df_roi = pd.read_csv(fp_roi).set_index('index') if opt_slice: df_roi = df_roi[opt_slice[0]:opt_slice[1]] # ------------------------------------------------- # process here df_img_groups = df_roi.groupby('record_index') log.debug('processing {:,} groups'.format(len(df_img_groups))) vecs = [] for record_index, df_img_group in tqdm(df_img_groups): # make fp ds_record = df_record.iloc[record_index] fp_im = data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext) im = cv.imread(fp_im) for roi_index, df_img in df_img_group.iterrows(): # get bbox x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h imw = df_img.image_width imh = df_img.image_height dim = im.shape[:2][::-1] # get face vector dim = (imw, imh) bbox_dim = BBox.from_xywh(x, y, w, h).to_dim(dim) # convert to int real dimensions # compute vec # padding=opt_padding not yet implemented in 19.16 but merged in master vec = facerec.vec(im, bbox_dim, jitters=opt_jitters) vec_str = ','.join([repr(x) for x in vec]) # convert to string for CSV vecs.append( {'roi_index': roi_index, 'record_index': record_index, 'vec': vec_str}) # save date df = pd.DataFrame.from_dict(vecs) df.index.name = 'index' file_utils.mkdirs(fp_out) df.to_csv(fp_out)