""" Crop images to prepare for training """ import click # from PIL import Image, ImageOps, ImageFilter, ImageDraw from app.settings import types from app.utils import click_utils from app.settings import app_cfg as cfg color_filters = {'color': 1, 'gray': 2, 'all': 3} @click.command() @click.option('-f', '--files', 'opt_fp_files', required=True, help='Input ROI CSV') @click.option('-r', '--rois', 'opt_fp_rois', required=True, help='Input ROI CSV') @click.option('-m', '--media', 'opt_dir_media', required=True, help='Input media directory') @click.option('-o', '--output', 'opt_fp_out', required=True, help='Output CSV') @click.option('--size', 'opt_size', type=(int, int), default=(300, 300), help='Output image size') @click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), help='Slice list of files') @click.option('-f', '--force', 'opt_force', is_flag=True, help='Force overwrite file') @click.pass_context def cli(ctx, opt_fp_files, opt_fp_rois, opt_dir_media, opt_fp_out, opt_size, opt_slice, opt_force): """Converts ROIs to pose: roll, yaw, pitch""" import sys import os from os.path import join from pathlib import Path from glob import glob from tqdm import tqdm import numpy as np import dlib # must keep a local reference for dlib import cv2 as cv import pandas as pd from app.models.bbox import BBox from app.utils import logger_utils, file_utils, im_utils from app.processors.face_landmarks import LandmarksDLIB from app.processors.face_pose import FacePoseDLIB # ------------------------------------------------- # init here log = logger_utils.Logger.getLogger() # init face processors face_pose = FacePoseDLIB() face_landmarks = LandmarksDLIB() df_files = pd.read_csv(opt_fp_files) df_rois = pd.read_csv(opt_fp_rois) if not opt_force and Path(opt_fp_out).exists(): log.error('File exists. Use "-f / --force" to overwite') return if opt_slice: df_rois = df_rois[opt_slice[0]:opt_slice[1]] # ------------------------------------------------- # process here df_roi_groups = df_rois.groupby('index') log.debug('processing {:,} groups'.format(len(df_roi_groups))) poses = [] #for df_roi_group in tqdm(df_roi_groups.itertuples(), total=len(df_roi_groups)): for df_roi_group_idx, df_roi_group in tqdm(df_roi_groups): # make fp image_index = df_roi_group.image_index.values[0] pds_file = df_files.iloc[image_index] fp_im = join(opt_dir_media, pds_file.subdir, '{}.{}'.format(pds_file.fn, pds_file.ext)) im = cv.imread(fp_im) # get bbox x = df_roi_group.x.values[0] y = df_roi_group.y.values[0] w = df_roi_group.w.values[0] h = df_roi_group.h.values[0] dim = im.shape[:2][::-1] bbox = BBox.from_xywh(x, y, w, h).to_dim(dim) # get pose landmarks = face_landmarks.landmarks(im, bbox) pose = face_pose.pose(landmarks, dim) pose['image_index'] = image_index poses.append(pose) # save date file_utils.mkdirs(opt_fp_out) df = pd.DataFrame.from_dict(poses) df.index.name = 'index' df.to_csv(opt_fp_out)