""" Converts ROIs to pose: yaw, roll, pitch """ import click from app.settings import types from app.utils import click_utils from app.settings import app_cfg as cfg @click.command() @click.option('-i', '--input', 'opt_fp_in', default=None, help='Override enum input filename CSV') @click.option('-o', '--output', 'opt_fp_out', default=None, help='Override enum output filename CSV') @click.option('-m', '--media', 'opt_dir_media', default=None, help='Override enum media directory') @click.option('--data_store', 'opt_data_store', type=cfg.DataStoreVar, default=click_utils.get_default(types.DataStore.SSD), show_default=True, help=click_utils.show_help(types.Dataset)) @click.option('--dataset', 'opt_dataset', type=cfg.DatasetVar, required=True, show_default=True, help=click_utils.show_help(types.Dataset)) @click.option('--size', 'opt_size', type=(int, int), default=(300, 300), help='Output image size') @click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), help='Slice list of files') @click.option('-f', '--force', 'opt_force', is_flag=True, help='Force overwrite file') @click.option('-d', '--display', 'opt_display', is_flag=True, help='Display image for debugging') @click.pass_context def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size, opt_slice, opt_force, opt_display): """Converts ROIs to pose: roll, yaw, pitch""" import sys import os from os.path import join from pathlib import Path from glob import glob from tqdm import tqdm import numpy as np import dlib # must keep a local reference for dlib import cv2 as cv import pandas as pd from app.models.bbox import BBox from app.utils import logger_utils, file_utils, im_utils from app.processors.face_landmarks import LandmarksDLIB from app.processors.face_pose import FacePoseDLIB from app.models.data_store import DataStore # ------------------------------------------------- # init here log = logger_utils.Logger.getLogger() # set data_store data_store = DataStore(opt_data_store, opt_dataset) # get filepath out fp_out = data_store.metadata(types.Metadata.FACE_POSE) if opt_fp_out is None else opt_fp_out if not opt_force and Path(fp_out).exists(): log.error('File exists. Use "-f / --force" to overwite') return # init face processors face_pose = FacePoseDLIB() face_landmarks = LandmarksDLIB() # load filepath data fp_record = data_store.metadata(types.Metadata.FILE_RECORD) df_record = pd.read_csv(fp_record).set_index('index') # load ROI data fp_roi = data_store.metadata(types.Metadata.FACE_ROI) df_roi = pd.read_csv(fp_roi).set_index('index') # slice if you want if opt_slice: df_roi = df_roi[opt_slice[0]:opt_slice[1]] # group by image index (speedup if multiple faces per image) df_img_groups = df_roi.groupby('record_index') log.debug('processing {:,} groups'.format(len(df_img_groups))) # store poses and convert to DataFrame poses = [] # iterate for record_index, df_img_group in tqdm(df_img_groups): # make fp ds_record = df_record.iloc[record_index] fp_im = data_store.face_image(ds_record.subdir, ds_record.fn, ds_record.ext) im = cv.imread(fp_im) # get bbox x = df_img_group.x.values[0] y = df_img_group.y.values[0] w = df_img_group.w.values[0] h = df_img_group.h.values[0] dim = im.shape[:2][::-1] bbox = BBox.from_xywh(x, y, w, h).to_dim(dim) # get pose landmarks = face_landmarks.landmarks(im, bbox) pose_data = face_pose.pose(landmarks, dim, project_points=opt_display) pose_degrees = pose_data['degrees'] # only keep the degrees data # use the project point data if display flag set if opt_display: pts_im = pose_data['points_image'] pts_model = pose_data['points_model'] pt_nose = pose_data['point_nose'] dst = im.copy() face_pose.draw_pose(dst, pts_im, pts_model, pt_nose) face_pose.draw_degrees(dst, pose_degrees) # display to cv window cv.imshow('', dst) while True: k = cv.waitKey(1) & 0xFF if k == 27 or k == ord('q'): # ESC cv.destroyAllWindows() sys.exit() elif k != 255: # any key to continue break # add image index and append to result CSV data pose_degrees['record_index'] = record_index poses.append(pose_degrees) # save date file_utils.mkdirs(fp_out) df = pd.DataFrame.from_dict(poses) df.index.name = 'index' df.to_csv(fp_out)