""" NB: This only works with the DLIB 68-point landmarks. Converts ROIs to pose: yaw, roll, pitch pitch: looking down or up in yes gesture roll: tilting head towards shoulder yaw: twisting head left to right in no gesture """ """ TODO - check compatibility with MTCNN 68 point detector - improve accuracy by using MTCNN 5-point - refer to https://github.com/jerryhouuu/Face-Yaw-Roll-Pitch-from-Pose-Estimation-using-OpenCV/ """ import click from app.settings import types from app.utils import click_utils from app.settings import app_cfg as cfg @click.command() @click.option('-i', '--input', 'opt_fp_in', default=None, help='Override enum input filename CSV') @click.option('-o', '--output', 'opt_fp_out', default=None, help='Override enum output filename CSV') @click.option('-m', '--media', 'opt_dir_media', default=None, help='Override enum media directory') @click.option('--store', 'opt_data_store', type=cfg.DataStoreVar, default=click_utils.get_default(types.DataStore.HDD), show_default=True, help=click_utils.show_help(types.Dataset)) @click.option('--dataset', 'opt_dataset', type=cfg.DatasetVar, required=True, show_default=True, help=click_utils.show_help(types.Dataset)) @click.option('--size', 'opt_size', type=(int, int), default=(300, 300), help='Output image size') @click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), help='Slice list of files') @click.option('-f', '--force', 'opt_force', is_flag=True, help='Force overwrite file') @click.option('-d', '--display', 'opt_display', is_flag=True, help='Display image for debugging') @click.pass_context def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size, opt_slice, opt_force, opt_display): """Converts ROIs to pose: roll, yaw, pitch""" import sys import os from os.path import join from pathlib import Path from glob import glob from tqdm import tqdm import numpy as np import dlib # must keep a local reference for dlib import cv2 as cv import pandas as pd from app.models.bbox import BBox from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils from app.processors.face_landmarks import Dlib2D_68 from app.processors.face_pose import FacePoseDLIB from app.models.data_store import DataStore # ------------------------------------------------- # init here log = logger_utils.Logger.getLogger() # set data_store data_store = DataStore(opt_data_store, opt_dataset) # get filepath out fp_out = data_store.metadata(types.Metadata.FACE_POSE) if opt_fp_out is None else opt_fp_out if not opt_force and Path(fp_out).exists(): log.error('File exists. Use "-f / --force" to overwite') return # init face processors face_pose = FacePoseDLIB() face_landmarks = Dlib2D_68() # ------------------------------------------------- # load data fp_record = data_store.metadata(types.Metadata.FILE_RECORD) df_record = pd.read_csv(fp_record).set_index('index') # load ROI data fp_roi = data_store.metadata(types.Metadata.FACE_ROI) df_roi = pd.read_csv(fp_roi).set_index('index') # slice if you want if opt_slice: df_roi = df_roi[opt_slice[0]:opt_slice[1]] # group by image index (speedup if multiple faces per image) df_img_groups = df_roi.groupby('record_index') log.debug('processing {:,} groups'.format(len(df_img_groups))) # store poses and convert to DataFrame results = [] # ------------------------------------------------- # iterate groups with file/record index as key for record_index, df_img_group in tqdm(df_img_groups): # access the file_record file_record = df_record.iloc[record_index] # pands.DataSeries # load image fp_im = data_store.face(file_record.subdir, file_record.fn, file_record.ext) im = cv.imread(fp_im) im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) # iterate image group dataframe with roi index as key for roi_index, df_img in df_img_group.iterrows(): # get bbox x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h #dim = (file_record.width, file_record.height) dim = im_resized.shape[:2][::-1] bbox = BBox.from_xywh(x, y, w, h).to_dim(dim) # get pose landmarks = face_landmarks.landmarks(im_resized, bbox) pose_data = face_pose.pose(landmarks, dim) #pose_degrees = pose_data['degrees'] # only keep the degrees data #pose_degrees['points_nose'] = pose_data # draw landmarks if optioned if opt_display: draw_utils.draw_pose(im_resized, pose_data['point_nose'], pose_data['points']) draw_utils.draw_degrees(im_resized, pose_data) cv.imshow('', im_resized) display_utils.handle_keyboard() # add image index and append to result CSV data pose_data['roi_index'] = roi_index for k, v in pose_data['points'].items(): pose_data[f'point_{k}_x'] = v[0][0] / dim[0] pose_data[f'point_{k}_y'] = v[0][1] / dim[1] # rearrange data structure for DataFrame pose_data.pop('points') pose_data['point_nose_x'] = pose_data['point_nose'][0] / dim[0] pose_data['point_nose_y'] = pose_data['point_nose'][1] / dim[1] pose_data.pop('point_nose') results.append(pose_data) # create DataFrame and save to CSV file_utils.mkdirs(fp_out) df = pd.DataFrame.from_dict(results) df.index.name = 'index' df.to_csv(fp_out) # save script file_utils.write_text(' '.join(sys.argv), '{}.sh'.format(fp_out))