""" Crop images to prepare for training """ import click from app.settings import types from app.utils import click_utils from app.settings import app_cfg as cfg @click.command() @click.option('-i', '--input', 'opt_fp_in', required=True, help='Input directory') @click.option('-r', '--records', 'opt_fp_records', required=True, help='Input directory') @click.option('-m', '--media', 'opt_fp_media', required=True, help='Image directory') @click.option('-o', '--output', 'opt_fp_out', required=True, help='Output CSV') @click.option('--size', 'opt_size', type=(int, int), default=(300, 300), help='Output image size') @click.option('-g', '--gpu', 'opt_gpu', default=0, help='GPU index') @click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), help='Slice list of files') @click.option('-f', '--force', 'opt_force', is_flag=True, help='Force overwrite file') @click.option('-j', '--jitters', 'opt_jitters', default=cfg.DLIB_FACEREC_JITTERS, help='Number of jitters') @click.option('-p', '--padding', 'opt_padding', default=cfg.DLIB_FACEREC_PADDING, help='Percentage padding') @click.pass_context def cli(ctx, opt_fp_in, opt_fp_records, opt_fp_out, opt_fp_media, opt_size, opt_gpu, opt_slice, opt_jitters, opt_padding, opt_force): """Converts frames with faces to CSV of rows""" import sys import os from os.path import join from pathlib import Path from tqdm import tqdm import numpy as np import dlib # must keep a local reference for dlib import cv2 as cv import dlib import pandas as pd from app.utils import logger_utils, file_utils, im_utils from app.models.bbox import BBox from app.processors import face_recognition # ------------------------------------------------- # init here log = logger_utils.Logger.getLogger() if not opt_force and Path(opt_fp_out).exists(): log.error('File exists. Use "-f / --force" to overwite') return # init dlib FR facerec = face_recognition.RecognitionDLIB() # load data df_rois = pd.read_csv(opt_fp_in) df_records = pd.read_csv(opt_fp_records) if opt_slice: df_rois = df_rois[opt_slice[0]:opt_slice[1]] log.info('Processing {:,} rows'.format(len(df_rois))) nrows = len(df_rois) # face vecs vecs = [] for roi_idx, row in tqdm(df_rois.iterrows(), total=nrows): # make image path record_id = int(row['id']) df = df_records.iloc[record_id] fp_im = join(opt_fp_media, df['subdir'], '{}.{}'.format(df['fn'], df['ext'])) # load image im = cv.imread(fp_im) # make bbox xywh = [row['x'], row['y'], row['w'] , row['h']] bbox = BBox.from_xywh(*xywh) # scale to actual image size dim = (row['image_width'], row['image_height']) bbox_dim = bbox.to_dim(dim) # compute vec vec = facerec.vec(im, bbox_dim, jitters=opt_jitters, padding=opt_padding) vec_str = ','.join([repr(x) for x in vec]) vecs.append( {'id': row['id'], 'vec': vec_str}) # save data file_utils.mkdirs(opt_fp_out) df_vecs = pd.DataFrame.from_dict(vecs) df_vecs.to_csv(opt_fp_out, index=False) log.info('saved {:,} lines to {}'.format(len(df_vecs), opt_fp_out))