import os from os.path import join from pathlib import Path import math import cv2 as cv import numpy as np import imutils from app.utils import im_utils, logger_utils from app.models.bbox import BBox from app.settings import app_cfg as cfg from app.settings import types class FacePoseDLIB: dnn_size = (400, 400) pose_types = {'pitch': (0,0,255), 'roll': (255,0,0), 'yaw': (0,255,0)} def __init__(self): self.log = logger_utils.Logger.getLogger() def pose(self, landmarks_norm, dim): '''Returns face pose information :param landmarks: (list) of 68 (int, int) xy tuples :param dim: (tuple|list) of image (width, height) :returns (dict) of pose attributes ''' # computes pose using 6 / 68 points from dlib face landmarks # based on learnopencv.com and # https://github.com/jerryhouuu/Face-Yaw-Roll-Pitch-from-Pose-Estimation-using-OpenCV/ # NB: not as accurate as MTCNN, see @jerryhouuu for ideas pose_points_idx = (30, 8, 36, 45, 48, 54) axis = np.float32([[500,0,0], [0,500,0], [0,0,500]]) # 3D model points. model_points = np.array([ (0.0, 0.0, 0.0), # Nose tip (0.0, -330.0, -65.0), # Chin (-225.0, 170.0, -135.0), # Left eye left corner (225.0, 170.0, -135.0), # Right eye right corne (-150.0, -150.0, -125.0), # Left Mouth corner (150.0, -150.0, -125.0) # Right mouth corner ]) # Assuming no lens distortion dist_coeffs = np.zeros((4,1)) # find 6 pose points pose_points = [] for j, idx in enumerate(pose_points_idx): x,y = landmarks_norm[idx] pt = (int(x*dim[0]), int(y*dim[1])) pose_points.append(pt) pose_points = np.array(pose_points, dtype='double') # convert to double, real dimensions # create camera matrix focal_length = dim[0] center = (dim[0]/2, dim[1]/2) cam_mat = np.array( [[focal_length, 0, center[0]], [0, focal_length, center[1]], [0, 1, 1]], dtype = "double") # solve PnP for rotation and translation (success, rot_vec, tran_vec) = cv.solvePnP(model_points, pose_points, cam_mat, dist_coeffs, flags=cv.SOLVEPNP_ITERATIVE) result = {} # project points pts_im, jac = cv.projectPoints(axis, rot_vec, tran_vec, cam_mat, dist_coeffs) pts_model, jac2 = cv.projectPoints(model_points, rot_vec, tran_vec, cam_mat, dist_coeffs) result['points'] = { 'pitch': list(map(int,pts_im[0][0])), 'roll': list(map(int,pts_im[2][0])), 'yaw': list(map(int,pts_im[1][0])) } result['point_nose'] = tuple(map(int,pose_points[0])) rvec_matrix = cv.Rodrigues(rot_vec)[0] # convert to degrees proj_matrix = np.hstack((rvec_matrix, tran_vec)) eulerAngles = cv.decomposeProjectionMatrix(proj_matrix)[6] pitch, yaw, roll = [math.radians(x) for x in eulerAngles] pitch = math.degrees(math.asin(math.sin(pitch))) roll = -math.degrees(math.asin(math.sin(roll))) yaw = math.degrees(math.asin(math.sin(yaw))) result['pitch'] = pitch result['roll'] = roll result['yaw'] = yaw return result